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Model problem

Given a bounded Lipschitz polyhedron in R3 with connected boundary Γ
and unit outward normal n, we seek non-trivial Electric fields
E ≡ (E1(x),E2(x),E3(x)) which satisfies

∇× (∇× E) + c(x)E = f(x), in Ω,

n × E = 0 on Γ.

Where c(x) is assumed to be a bounded in Ω and f ∈ L2(Ω). For
simplicity, we set c(x) ≡ 1 for this lecture.
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Model problem

The model problem describes how electric fields behave inside a
material with sources f and spatially varying properties c(x).

The homogeneous Dirichlet boundary condition n × E = 0 is referred
to as a perfectly conducting boundary condition.

This boundary condition ensures that the electric field vanishes
tangentially on the surface, effectively modeling a perfectly
conducting enclosure.
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Solution space

Definition

H(curl,Ω) = {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)}

Exercise

Show that the space H(curl,Ω), endowed with the inner product

(v,u)H(curl;Ω) = (v,u)L2(Ω) + (∇× v,∇× u)L2(Ω).

is a Hilbert space.

The norm induced by the inner product (v,u)H(curl,Ω) is

∥∥u∥∥
H(curl;Ω)

=
(∥∥u∥∥2

L2(Ω)
+
∥∥∇× u

∥∥2
L2(Ω)

) 1
2
.
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Trace theorem

Trace theorem

Let n denote the outward normal to the boundary Γ. The map

γt : u → u× n

is continuous and linear from H(curl,Ω) to
(
H− 1

2 (Γ)
)3

.

Definition

H0(curl,Ω) = {u ∈ H(curl,Ω) : γt(u) = 0(n × u = 0) on Γ}
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Green’s formula

Let u be in H(curl,Ω) and v be a test function in H1(Ω). We then have∫
Ω
v · (∇× u) dx =

∫
Ω
u · (∇× v) dx +

∫
Γ
(n × u) · vds.
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Variational formulation

The variational formulation is obtained by multiplying the model equation
with a test function and integrating over Ω:∫

Ω
[∇× (∇× E)] · v dΩ+

∫
Ω
E · v dΩ =

∫
Ω
f · v dΩ.

Applying integration by parts/Green’s formula, we get∫
Ω
(∇× E) · (∇× v) dΩ+

∫
Ω
E · v dΩ =

∫
Ω
f · v dΩ, (1)

for all v ∈ H0(curl,Ω).
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Bilinear form

The bilinear form defined on H0(curl,Ω)× H0(curl,Ω) by

a(E, v) =

∫
Ω
(∇× E) · (∇× v) dΩ+

∫
Ω
E · v dΩ.

Now, the problem is reduced to find E ∈ H0(curl,Ω) such that

a(E, v) = f(v), ∀v ∈ H0(curl,Ω). (2)
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Lemma (Boundedness)

There exists a positive constant C > 0 such that

|a(u, v)| ≤ C∥u∥H(curl,Ω)∥v∥H(curl,Ω) ∀u, v ∈ H0(curl,Ω).

Consider

|a(u, v)| ≤
∣∣∣∣∫

Ω
(∇× u) · (∇× v) dx

∣∣∣∣+ ∣∣∣∣∫
Ω
u · v dx

∣∣∣∣
≤ ∥∇× u∥L2(Ω) ∥∇ × v∥L2(Ω) + ∥u∥L2(Ω) ∥v∥L2(Ω)

≤
(
∥∇ × u∥2L2(Ω) + ∥u∥2L2(Ω)

) 1
2
(
∥∇ × v∥2L2(Ω) + ∥v∥2L2(Ω)

) 1
2

≤ ∥u∥H(curl,Ω)∥v∥H(curl,Ω),

where C = 1.
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Lemma (Coercive)

There exists a positive constant α > 0 such that

|a(u, u)| ≥ α∥u∥2H(curl,Ω) ∀u ∈ H0(curl,Ω).
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Lax-Milgram

Suppose a : X × X → R is a bounded and coercive bilinear form. Then for
each f ∈ X ′, there exists a unique solution u ∈ X to

a(u, v) = f (v) ∀v ∈ X ,

and

∥u∥X ≤ C

α
∥f ∥X ′ ,

where C and α are the constants in the boundedness and coercivity
definitions above.

Therefore, there exists a unique solution E ∈ H0(curl,Ω) to

a(E, v) = (f, v) ∀v ∈ H0(curl,Ω),

and
∥E∥H(curl,Ω) ≤ ∥f∥L2(Ω),
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Let c(x) ≡ −α, α > 0. The model problem

∇× (∇× E)− αE = f(x), in Ω,

n × E = 0, on Γ.

Then existence and uniqueness of E follows from the Fredholm
Alternative.

If c(x) ≡ 0, then model leads to Saddle point system

Gangadhara Boregowda Vector Finite Element Method Nov 25, 2025 12 / 31



Edge element discretization

Assume that the bounded domain Ω is partitioned into a regular mesh
Th consisting of triangles (in 2D) or tetrahedra (in 3D) with mesh size
h.
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Characterization of H(curl,Ω)

Let K−and K+be two polygonal (resp. polyhedral) Lipschitz domains in
Rd , with a common edge (resp. common edge or face)
e = ∂K− ∩ ∂K+ ̸= ∅ and denote by Ω = K− ∪ K+their union. A function
v is in H(curl; Ω) if and only if the restricion v−of v to K−is in
H (curl;K−), the restricion v+of v to K+ is in H (curl;K+)and the
tangential jump over e vanishes: (v− × n−) + (v+ × n+) = 0 on e.
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The Nedelec’s elements space is defined as

V k
h =

{
v ∈ H0(curl,Ω) : v |K ∈ Rk for all K ∈ Th

}
where

Rk = (Pk−1)
d ⊕

{
p ∈ (P̃k)

d
∣∣ x · p = 0

}
,

Pk is the space of polynomials of total degree at most k, and P̃k

denotes the space of homogeneous polynomials of degree k.
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The discrete variational formulation corresponding to (2) is:
Find Eh ∈ V k

h such that

a(Eh, vh) = (f, vh) ∀ vh ∈ V k
h ,

where V k
h ⊂ H0(curl,Ω) denotes a finite-dimensional conforming

subspace.
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Finite element basis functions. A general definition of finite
elements on an arbitrary polyhedra is given by the following.

Definition

A finite element (K ,P,A), consists of

K , a polyhedral domain;

P , a vector space of polynomials defined on K having a basis
{ϕ1, ϕ2, ..., ϕN} (called shape functions);

A, a set of linear functionals defined on P having a basis l1, l2, ..., lN
(called the degrees of freedom ).
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Edge Elements

Let K denote a triangle (in 2D) or a tetrahedron (in 3D), specified by
its set of vertices and edges

For the k-th edge ek with vertices (i , j) and the direction from i to j ,
the basis ϕk and corresponding degree of freedom lk(·) are

ϕk = λi∇λj − λj∇λi , lk(v) =

∫
ek

v · t ds ≈ 1

2

[
v(i) + v(j)

]
· ek ,

where the quadrature is exact when v · t is linear. And, λi are
barycentric coordinates.

The basis functions and degrees of freedom satisfy

lk(ϕm) =

{
1 k = m

0 k ̸= m
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The local edge element space

NE 0 = span{ϕk , k = 1, 2, 3(for triangle), k = 1, 2, 3..., 6(for tetrahedron)}

The global finite element space is obtained by assembling the local
edge element spaces on all elements and identifying the degrees of
freedom associated with the same geometric edges.
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Figure: Basis of NE 0 in a triangle

Vector field ϕk of edge k is orthogonal to other edges.
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The edge element space NE 0 is H(curl,Ω) conforming subspace.

Proof: To show the obtained spaces are indeed in H(curl,Ω), it suffices to
verify the tangential continuity of the piecewise polynomials. Consider a
tetrahedron T and a triangular face f . Let xf be the vertex opposite to f
and λf the barycentric coordinate corresponding to xf .
On the face f , we have λf |f = 0, and ∇λf is normal to f , so
∇λf × nf = 0.
For an edge e using xf as a vertex, the Nédélec basis function is a linear
combination of λi∇λf and λf∇λi . Restricting to f :

λf∇λi = 0, ∇λf × nf = 0 ⇒ ϕe |f × nf = 0.

Therefore, for any v ∈ NE 0(T ), the tangential trace v |f × nf depends only
on the basis functions of the edges of f . Since these match across
neighboring tetrahedra, the tangential continuity is satisfied, proving that
the space is a subspace of H(curl; Ω).
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Given a triangulation Th with mesh size h. Define

I curlh : V ∩ dom(I curlh ) → NE 0(Th)

as follows: given a function u ∈ V , define uI = I curlh u ∈ NE 0(Th) by
matching the d.o.f.

le(I
curl
h u) = le(u) ∀e ∈ Eh(Th).

Namely,

uI =
∑
e∈Eh

(∫
e
u · t ds

)
ϕe .
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Reference elements

Figure: Reference triangle element.

Figure: Reference tetrahedron
element.
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The barycentric coordinates for the reference triangle

λ1 = 1− ζ − η,

λ2 = ζ,

λ3 = η.

The edge basis functions for the triangle element are

ϕ̂12 = (1− η, ζ),

ϕ̂23 = (−η, ζ),

ϕ̂31 = (−η, ζ − 1).
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The edge basis functions for the triangle element are

ϕ̂41 = ( 1− ν − η, ζ, ζ ),

ϕ̂12 = (−ν, ζ, 0),

ϕ̂24 = (−ν, −1 + ζ + ν, −ν),

ϕ̂23 = (0, −η, ν),

ϕ̂34 = (−η, −η, −1 + ζ + ν),

ϕ̂31 = (η, 0, −ζ).
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Piola transformation

An affine triangle or tetrahedron K is described by affine element map
FK : K̂ → K by

K ∋ x = FK (x̂) = BK x̂ + bK .

The shape function ϕ(x) on the element K = FK (K̂ ) are obtained
from the reference shape functions by

ϕ(x) =
(
D̂F−T

K ϕ̂
)
◦ F−1

K (x),

where D̂FK is the Jocobian d
dx̂ FK (x̂) of the element map.
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Implementation

Suppose that the solution domain Ω is discretized using polygonal
elements. By interpolating the vector field E with the edge basis functions,
we write

E(x) =
N∑
i=1

Ei ϕi (x),

where N is the number of edges in the element. Taking the test function
v = ϕi (x) for i = 1, 2, . . . ,N leads to the following matrix equation:

[K e ] [E e ] = [Se ].

This represents the finite element equation at the element level.
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The coefficients of the element stiffness matrix and the load vector
are computed using the following expressions:

K e
ij =

∫
Ωe

(∇× ϕi ) ·
(
∇× ϕj

)
dx +

∫
Ωe

ϕi · ϕj dx ,

Se
i =

∫
Ωe

f · ϕi dx ,

for i , j = 1, 2, . . . ,N, where N is the number of edges in the element.

By assembling the element-level matrices and vectors, the global
linear system is obtained:

[K ][E ] = [S ].
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Advantages of edge elements

Edge elements allow the normal component of a vector field to be
discontinuous across element boundaries.

Edge elements require fewer degrees of freedom compared to nodal
elements.
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Example

Consider Ω = [0, 1]× [0, 1], c(x) = 1 for all x ∈ Ω and

f(x, y) = (cos(πx) sin(πy), sin(πx) cos(πy)).

The analytical solution to the model problem is given by

E = (cos(πx) sin(πy), sin(πx) cos(πy))
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