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TensorFlow

TensorFlow (TF) is a numerical computation library based on 
dataflow graphs.

A TensorFlow program describes how data moves between 
operations, each represented as a node in a graph.

Everything in TensorFlow is represented as a tensor and manipulated 
through computational graphs.

Tensors = multidimensional arrays.
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TensorFlow

TensorFlow is an open-source machine learning framework 
developed by Google Brain. It is used for building and deploying 
machine learning (ML) and deep learning (DL) models at scale.

Everything in TensorFlow is represented as a tensor and manipulated 
through computational graphs.

Tensors = multidimensional arrays.
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Features

Computational Graphs

• Static graph (TF1.x)
• Eager execution (TF2.x)
• Optimized execution through tf.function()

TensorFlow automatically uses:
• CPU
• GPU
• TPU (Tensor Processing Unit)
• Device placement is automatic but can be controlled manually.

Multi-Device Execution
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Keras

TF ships with Keras, a user-friendly tool for building neural networks.

model = tf.keras.Sequential([

    tf.keras.layers.Dense(64, activation='relu'),

    tf.keras.layers.Dense(1)

])
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Automatic Differentiation

Through tf.GradientTape() TensorFlow automatically computes derivatives.
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Distributed Training

Supports:
• Data parallelism
• Model parallelism
• Multi-GPU / Multi-TPU clusters
Frameworks:
• MirroredStrategy
• MultiWorkerMirroredStrategy
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Deployment Ecosystem

• TensorFlow Lite → mobile/IoT
• TensorFlow.js → browser
• TensorFlow Serving → production models
• TFX pipelines → end-to-end ML workflow
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How TensorFlow Works (Step-by-Step)

Step 1: Define a computation graph

Nodes = operations
Edges = tensors flowing between operations

Step 2: Execute graph

Backends like XLA compile and optimize the graph.

Step 3: Automatic differentiation

Used for backpropagation in neural networks.
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TensorFlow: Programming Model

Tensors

x = tf.constant([[1.0, 2.0], [3.0, 4.0]])

Variables

w = tf.Variable(tf.random.normal([2, 2]))

Gradient Tape

with tf.GradientTape() as tape:

    y = model(x)

grads = 

tape.gradient(y,model.trainable_variables)
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TensorFlow vs PyTorch

Feature TensorFlow PyTorch

Execution Graph + Eager Eager by default

Deployment Strong (TFX, Lite) Improving (TorchServe)

Mobile TensorFlow Lite PyTorch Mobile

TPU support Excellent Limited

Research flexibility Moderate Very flexible

TensorFlow is strong in production; 
PyTorch is strong in research.



Panchatcharam

TensorFlow for PINNs and PDEs

TensorFlow is commonly used for:
•Physics-Informed Neural Networks (PINNs)
•Auto-differentiation of PDE residuals
•High-order derivatives
•PDE solvers via 
tf.GradientTape(persistent=True)
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TensorFlow for PINNs and PDEs

with tf.GradientTape(persistent=True) as t2:

with tf.GradientTape(persistent=True) as t1:

u = model(x)

du_dx = t1.gradient(u, x)

d2u_dx2 = t2.gradient(du_dx, x)
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When to Use TensorFlow

• You want mobile/web deployment
• You need TPU acceleration
• You are developing production-grade models
• You want strong pipeline support (TFX)
• You work with PINNs or differential programming
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When Not to Use TensorFlow

Consider PyTorch if:
• You do rapid prototyping
• You want very flexible autograd
• Your workflow is purely research (academia)
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TensorFlow vs PyTorch
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TensorFlow vs PyTorch

• Originally designed for production-scale deployment.
• Uses static graphs (TF1) + eager execution (TF2).
• Strong integration with Google’s ecosystem (TPU, TFX, TensorFlow Lite). TensorFlow

• Designed for research flexibility.
• Uses eager execution by default (define-by-run).
• Most popular in academia and rapid experimentation. PyTorch

TensorFlow → production-first
PyTorch → research-first



Panchatcharam

Programming: TensorFlow vs PyTorch

• Graph-based; 
• optimized execution
• Functions wrapped with @tf.function
• Requires more boilerplate TensorFlow

• Pythonic, easy-to-read code
• Dynamic graph: operations executed immediately
• Very intuitive for debugging PyTorch

PyTorch is easier to write and debug.
TensorFlow is more optimized for execution.
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Model: TensorFlow vs PyTorch

model = tf.keras.Sequential([

    tf.keras.layers.Dense(64, activation="relu"),

    tf.keras.layers.Dense(1)

]) TensorFlow

class Net(nn.Module):

    def __init__(self):

        super().__init__()

        self.fc1 = nn.Linear(10, 64)

        self.fc2 = nn.Linear(64, 1)

    def forward(self, x):

        return self.fc2(F.relu(self.fc1(x))) PyTorch

Keras = simpler
PyTorch = more control & transparency
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AutoGrad: TensorFlow vs PyTorch

• Uses tf.GradientTape

• Supports higher-order derivatives

• Sometimes harder to compute complex derivatives in PDE problems

TensorFlow

torch.autograd is extremely flexible

Better for custom loss functions, PDEs, PINNs PyTorch

PyTorch autograd is more flexible and intuitive
TensorFlow autograd is more optimized for hardware
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Community and Popularity: TensorFlow vs PyTorch

Industry:
TensorFlow widely used by Google, Airbnb, Twitter, etc.

TensorFlow

Research papers:
PyTorch dominates (>80% of deep learning papers) PyTorch
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Performance: TensorFlow vs PyTorch

• Faster for static graphs
• XLA optimizations
• Better for large-scale production

TensorFlow

Slightly slower (dynamic execution)
But JIT improves performance
PyTorch 2.0 uses TorchDynamo + AOTAutograd → significant speedups

PyTorch

Performance gap is shrinking; both are comparable.
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PINN: TensorFlow vs PyTorch

• For PINNs in productionTPU acceleration for large 
• PDE parameter sweeps
• TF2 + Keras = clean high-level API

TensorFlow

• Easy autograd for PDE residuals
• Better control over backprop graph
• Faster prototyping for research
• JAX/PyTorch preferred in recent SciML papers

PyTorch

Research PINNs → PyTorch
Industrial PINNs / large simulations → TensorFlow or JAX
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Summary

Feature TensorFlow PyTorch

Execution Static + Eager Dynamic

Ease of use Moderate Very easy

Debugging Harder Very easy

Autograd Strong but complex Best-in-class

Deployment Excellent (TFX, Lite, JS) Good (TorchServe, ONNX)

TPU support Best Moderate

Research adoption Moderate Very High

Production adoption Very High Moderate

PINN suitability Good Excellent for research
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Which One Should I Choose?

Choose PyTorch if:
• You are doing research
• You work on PINNs, PDEs, SciML
• You want clean, Pythonic code
• You need fast debugging

Choose TensorFlow if:
• You want end-to-end ML pipelines
• You deploy to mobile or web
• You want TPU acceleration
• You work in production environments



TensorFlow CheatSheet

35



Panchatcharam

Install and Import

pip install tensorflow

import tensorflow as tf

from tensorflow import keras
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Tensor Creations and Operations

x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.Variable(tf.random.normal([3, 3]))

# Basic ops

y = x + 5

z = tf.matmul(x, tf.transpose(x))
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Build Models

model = keras.Sequential([

    keras.layers.Dense(64, activation='relu'),

    keras.layers.Dense(1)

])
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Functional

inputs = keras.Input(shape=(10,))

h = keras.layers.Dense(32, 

activation="relu")(inputs)

outputs = keras.layers.Dense(1)(h)

model = keras.Model(inputs, outputs)
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Compile and Train

model.compile(

    optimizer='adam',

    loss='mse',

    metrics=['mae']

)

model.fit(X_train, y_train, epochs=10, 

batch_size=32)
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Evaluate and Predict

model.evaluate(X_test, y_test)

y_pred = model.predict(X_new)
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Optimizers

opt = tf.keras.optimizers.Adam(learning_rate=0.001)

opt = tf.keras.optimizers.SGD(0.01, momentum=0.9)
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Activation Functions

tf.nn.relu(x)

tf.nn.sigmoid(x)

tf.nn.tanh(x)

tf.nn.softmax(x)

keras.layers.Dense(64, activation='relu')
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Loss Functions

keras.losses.MeanSquaredError()

keras.losses.BinaryCrossentropy()

keras.losses.CategoricalCrossentropy()

keras.losses.MeanAbsoluteError()
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Dataset and Data Pipeline

dataset = tf.data.Dataset.from_tensor_slices((X, y))

dataset = dataset.shuffle(1000).batch(32).prefetch(1)

raw_ds = tf.data.TFRecordDataset('data.tfrecord')
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Automatic Differentiation

x = tf.Variable(3.0)

with tf.GradientTape() as tape:

    y = x**2 + 2*x + 1

dy_dx = tape.gradient(y, x)

grads = tape.gradient(loss, 

model.trainable_variables)
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Training Loop

for epoch in range(10):

    for x_batch, y_batch in dataset:

        with tf.GradientTape() as tape:

            y_pred = model(x_batch, training=True)

            loss = tf.reduce_mean(tf.square(y_batch - y_pred))

        grads = tape.gradient(loss, model.trainable_variables)

        optimizer.apply_gradients(zip(grads, model.trainable_variables))
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Saving and Loading

model.save("model.h5")

model = keras.models.load_model("model.h5")
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Useful One-Liners

tf.random.set_seed(42)

tf.keras.utils.plot_model(model, show_shapes=True)

tf.reduce_sum(x)

tf.argmax(pred, axis=1)

tf.reshape(tensor, new_shape)

tf.cast(x, tf.float32)
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Install and Import

import torch

import torch.nn as nn

import torch.optim as optim

pip install torch torchvision torchaudio
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Tensor Creations and Operations

x = torch.tensor([1, 2, 3])

x = torch.zeros((3, 3))

x = torch.ones((2, 2))

x = torch.randn((4, 5))

y = x + 5

z = torch.matmul(x, x.T)

x = x.reshape(9)
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Build Models

class Net(nn.Module):

    def __init__(self):

        super().__init__()

        self.fc1 = nn.Linear(10, 64)

        self.fc2 = nn.Linear(64, 1)

    def forward(self, x):

        return self.fc2(torch.relu(self.fc1(x)))

model = Net()
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Common Layers

nn.Linear(in_features, out_features)

nn.Conv2d(in_channels, out_channels, kernel_size)

nn.MaxPool2d(kernel_size)

nn.Dropout(p=0.5)

nn.BatchNorm1d(num_features)
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Compile and Train

for epoch in range(10):

    for X, y in dataloader:

        optimizer.zero_grad()

        pred = model(X)

        loss = criterion(pred, y)

        loss.backward()

        optimizer.step()

    print(epoch, loss.item())
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Evaluate and Predict

model.evaluate(X_test, y_test)

y_pred = model.predict(X_new)



Panchatcharam

Optimizers

optimizer = optim.Adam(model.parameters(), lr=0.001)

optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optim.Adam(model.parameters(), lr=0.001)

optim.RMSprop(model.parameters(), lr=0.0005)
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Activation Functions

nn.ReLU()

nn.Sigmoid()

nn.Tanh()

nn.Softmax(dim=1)
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Loss Functions

criterion = nn.MSELoss()

nn.CrossEntropyLoss()     # multi-class

nn.BCELoss()              # binary

nn.BCEWithLogitsLoss()    # sigmoid + BCE
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Dataset and Data Pipeline

from torch.utils.data import Dataset, DataLoader

class MyDataset(Dataset):

    def __init__(self, X, y):

        self.X = X

        self.y = y

    def __len__(self):

        return len(self.X)

    def __getitem__(self, idx):

        return self.X[idx], self.y[idx]

loader = DataLoader(MyDataset(X, y), 

batch_size=32, shuffle=True)
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Automatic Differentiation

x = torch.randn(3, requires_grad=True)

y = x**2 + 3*x

y.sum().backward()

print(x.grad)
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Saving and Loading

torch.save(model.state_dict(), "model.pth")

model = Net()

model.load_state_dict(torch.load("model.pth"))

model.eval()
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