IIIIIIIIIIIIIIIIIIIIIIIIIIIII

TIRUPATI

TensorFlow vs PyTorch for PINN
Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,
IIT Tirupati

Panchatcharam




el SN dwerr fredf

0 0 A G References
TIRUPATI

» Deep Learning with PyTirch, Luca, et al
» Learning Tensorflow, Tom Hope, et al
» https://www.tensorflow.org/tutorials
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i 0 TensorFlow

TIRUPATI

Tensors = multidimensional arrays.

TensorFlow (TF) is a numerical computation library based on
dataflow graphs.

A TensorFlow program describes how data moves between
operations, each represented as a node in a graph.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.
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i 0 TensorFlow

TIRUPATI

Tensors = multidimensional arrays.

TensorFlow is an open-source machine learning framework
developed by Google Brain. It is used for building and deploying
machine learning (ML) and deep learning (DL) models at scale.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.
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Computational Graphs

e Static graph (TF1.x)
* Eager execution (TF2.x)
 Optimized execution through tf. function ()

Multi-Device Execution

TensorFlow automatically uses:

« CPU

e GPU

 TPU (Tensor Processing Unit)

* Device placement is automatic but can be controlled manually.
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TIRUPATI

TF ships with Keras, a user-friendly tool for building neural networks.

model = tf.keras.Sequential (]
tf.keras.layers.Dense (64, activation='relu'),
tf.keras.layers.Dense (1)

1)
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Through tf.cradientTape () TensorFlow automatically computes derivatives.
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I [ljf\lﬂﬂ Distributed Training

TIRUPATI

Supports:

e Data parallelism

* Model parallelism
 Multi-GPU / Multi-TPU clusters
Frameworks:

* MirroredStrategy

* MultiWorkerMirroredStrategy
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IIT Deployment Ecosystem

* TensorFlow Lite - mobile/loT

* TensorFlow.js - browser

* TensorFlow Serving - production models
* TFX pipelines - end-to-end ML workflow
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How TensorFlow Works (Step-by-Step)

Step 1: Define a computation graph

Nodes = operations
Edges = tensors flowing between operations

Step 2: Execute graph
Backends like XLA compile and optimize the graph.

Step 3: Automatic differentiation

Used for backpropagation in neural networks.
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I hIT TensorFlow: Programming Model

TIRUPATI

Tensors
X = tf.constant([[1.0, 2.0], [3.0, 4.0]1])

Variables
w = tf.Variable (tf.random.normal ([2, 2]))

Gradient Tape

with tf.GradientTape () as tape:
y = model (x)
grads =
tape.gradient (y,model.trainable variables)
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Feature

TensorFlow

TensorFlow vs PyTorch

PyTorch

Execution Graph + Eager Eager by default
Deployment Strong (TFX, Lite) Improving (TorchServe)
Mobile TensorFlow Lite PyTorch Mobile

TPU support Excellent Limited

Research flexibility Moderate Very flexible

Panchatcharam

TensorFlow is strong in production;
PyTorch is strong in research.
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LT TensorFlow for PINNs and PDEs

TIRUPATI

TensorFlow is commonly used for:

*Physics-Informed Neural Networks (PINNs)
*Auto-differentiation of PDE residuals

*High-order derivatives
*PDE solvers via

tf.GradlientTape (persistent=True)

Panchatcharam
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LT TensorFlow for PINNs and PDEs

TIRUPATI

with tf.GradientTape (persistent=True) as t2:
with tf.GradientTape (persistent=True) as tl:
u = model (x)
du dx = tl.gradient (u, Xx)
dZ2u dx2Z2 = tZ.gradient (du dx, X)

Panchatcharam
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o 0 When to Use TensorFlow

TIRUPATI

You want mobile/web deployment
You need TPU acceleration

You are developing production-grade models
You want strong pipeline support (TFX)
You work with PINNs or differential programming
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i i i fi When Not to Use TensorFlow

TIRUPATI

Consider PyTorch if:
* You do rapid prototyping

* You want very flexible autograd
* Your workflow is purely research (academia)
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TensorFlow vs PyTorch

¥ 101 Blockchains | TENSORFLOW VS PYTORCH

Criteria TensorFlow

Working g
Static graphs
Mechanism grap
TensorBoard offers an in-built
visualization tool for
TensorFlow.

Visualization

. You can use the ‘torch.nn’
Definition of Simple |,,\qge for importing layers
Neural Networks to build neural networks.

Production
Deployment

TensorFlow serving helps in
faster production deployment.

TensorFlow requires manual
programming for distributed
training.

Distributed
Training

TensorFlow has the same

Accuracy accuracy as PyTorch.

TensorFlow has an average
training time of 11.19 seconds. It
consumes 1.7GB of RAM during

training.

Training Time
and Memory
Consumption

PyTorch

Dynamic graphs

Visdom serves as the
visualization library with
minimalistic features.

TensorFlow uses the Keras
framework as its backend for
declaring layers.

PyTorch needs additional
frameworks like Django or
Flask as backend servers.

PyTorch features a uniform
increase in training accuracy.

ChatGPT offers a free version
along with a $ 20 monthly
subscription with additional
benefits.

PyTorch has an average
training time of 7.67 seconds.
It consumes 3.5 GB of RAM
during training.

Created by 101blockchains.com




@[IT TensorFlow vs PyTorch

TIRUPATI

* Originally designed for production-scale deployment.
» Uses static graphs (TF1) + eager execution (TF2).
 Strong integration with Google’s ecosystem (TPU, TFX, TensorFlow Lite). TensorFlow

* Designed for research flexibility.
e Uses eager execution by default (define-by-run).
 Most popular in academia and rapid experimentation. PyTorch

TensorFlow = production-first
PyTorch = research-first

Panchatcharam
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TIRUPATI

Programming: TensorFlow vs PyTorch

* Graph-based;

e optimized execution

* Functions wrapped with @tf.function

* Requires more boilerplate TensorFlow

e Pythonic, easy-to-read code
 Dynamic graph: operations executed immediately
* Very intuitive for debugging PyTorch

PyTorch is easier to write and debug.
TensorFlow is more optimized for execution.

Panchatcharam
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Model: TensorFlow vs PyTorch

model = tf.keras.Sequential ([
tf.keras.layers.Dense (64, activation="relu"),
tf.keras.layers.Dense (1)

1) TensorFlow
class Net (nn.Module) : Keras = simpler
def ~_ 1nit (self): PyTorch = more control & transparency
super () . 1nit ()

self.fcl = nn.Linear (10, o©64)
self.fc?2 = nn.Linear (64, 1)

def forward(self, Xx):
return self.fc?2 (F.relu(self.fcl(x))) PyTorch
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AutoGrad: TensorFlow vs PyTorch

e Uses tf.GradientTape TensorFlow
« Supports higher-order derivatives
« Sometimes harder to compute complex derivatives in PDE problems

torch.autograd is extremely flexible
Better for custom loss functions, PDEs, PINNs PyTorch

PyTorch autograd is more flexible and intuitive
TensorFlow autograd is more optimized for hardware

Panchatcharam




ﬂ]IT Community and Popularity: TensorFlow vs PyTorch

TIRUPATI

Industry: TensorFlow
TensorFlow widely used by Google, Airbnb, Twitter, etc.

Research papers:
PyTorch dominates (>80% of deep learning papers) PyTorch

Panchatcharam




@[IT Performance: TensorFlow vs PyTorch

TIRUPATI

* Faster for static graphs TensorFlow
* XLA optimizations
* Better for large-scale production

Slightly slower (dynamic execution)
But JIT improves performance PyTorch
PyTorch 2.0 uses TorchDynamo + AOTAutograd - significant speedups

Performance gap is shrinking; both are comparable.

Panchatcharam
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PINN: TensorFlow vs PyTorch

* For PINNs in productionTPU acceleration for large TensorFlow

* PDE parameter sweeps
* TF2 + Keras = clean high-level API

* Easy autograd for PDE residuals
* Better control over backprop graph PyTorch

* Faster prototyping for research
» JAX/PyTorch preferred in recent SciML papers

Research PINNs = PyTorch
Industrial PINNs / large simulations - TensorFlow or JAX

Panchatcharam
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i i i Summary

TIRUPATI
Feature TensorFlow PyTorch
Execution Static + Eager Dynamic
Ease of use Moderate Very easy
Debugging Harder Very easy
Autograd Strong but complex Best-in-class
Deployment Excellent (TFX, Lite, JS) Good (TorchServe, ONNX)
TPU support Best Moderate
Research adoption Moderate Very High
Production adoption Very High Moderate
PINN suitability Good Excellent for research

Panchatcharam
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i 0 Which One Should | Choose?

TIRUPATI

Choose PyTorch if:
You are doing research

You work on PINNs, PDEs, SciML
You want clean, Pythonic code
You need fast debugging

Choose TensorFlow if:
* You want end-to-end ML pipelines

* You deploy to mobile or web
* You want TPU acceleration
* You work in production environments
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i 0 Install and Import

TIRUPATI

pip install tensorflow

import tensorflow as tf
from tensorflow i1mport keras
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0 0 & Tensor Creations and Operations

IRUPATI

"=
A

x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
X = tf.Variable(tf.random.normal ([3, 3]))

# Basic ops
y = X + 5
z = tf.matmul (x, tf.transpose(x))

Panchatcharam




Build Models

TIRUPATI
model = keras.Sequential (]
keras.layers.Dense (64, activation='relu'),
keras.layers.Dense (1)
1)

Panchatcharam
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i 0 Functional

TIRUPATI

inputs = keras.Input (shape=(10,))

h = keras.layers.Dense (32,
activation="relu") (1nputs)

outputs = keras.layers.Dense (1) (h)
model = keras.Model (1nputs, outputs)

Panchatcharam
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i 0 Compile and Train

TIRUPATI

model.compille (
optimizer='adam',
loss="mse',
metrics=["'mae']

model.fi1t (X train, y train, epochs=10,
batch size=32)

Panchatcharam




i 0 Evaluate and Predict

TIRUPATI

model.evaluate (X test, y test)

y pred = model.predict (X new)
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Optimizers

opt = tf.keras.optimizers.Adam(learning rate=0.001)
opt = tf.keras.optimizers.SGD(0.01, momentum=0.9)

Panchatcharam




i [ Activation Functions

IRUPATI

= 3=
Py

tf.nn.relu(x)
tf.nn.sigmoid (x)
tf.nn.tanh (x)
tf.nn.softmax (x)

keras.layers.Dense (64, activation='relu')

Panchatcharam




Loss Functions

keras.losses.MeanSquaredError ()
keras.losses.BinaryCrossentropy ()
keras.losses.CategoricalCrossentropy ()
keras.losses.MeanAbsoluteError ()

Panchatcharam




@[IT Dataset and Data Pipeline

TIRUPATI

dataset = tf.data.Dataset.from tensor slices((X, y))
dataset = dataset.shuffle(1000) .batch(32) .prefetch (1)

raw _ds = tf.data.TFRecordDataset ('data.tfrecord')

Panchatcharam




x = tf.Variable (3.0)

with tf.GradientTape () as tape:
y = X**2 + 2*x + 1

dy dx = tape.gradient(y, Xx)

grads = tape.gradient (loss,
model.trainable variables)

Panchatcharam

Automatic Differentiation



i 0 Training Loop

TIRUPATI

for epoch in range(10):
for x batch, y batch in dataset:
with tf.GradientTape () as tape:
y pred = model (x batch, training=True)
loss = tf.reduce mean(tf.square(y batch - y pred))

grads = tape.gradient (loss, model.trainable variables)
optimizer.apply gradients(zip(grads, model.trainable variables))

Panchatcharam




i 0 A Saving and Loading

TIRUPATI

model.save ("model.hd")
model = keras.models.load model ("model.hd")

Panchatcharam




i 0 Useful One-Liners

TIRUPATI

tf.random.set seed(42)
tf.keras.utils.plot model (model, show shapes=True)
tf.reduce sum(x)

tf.argmax (pred, axis=1)

tf.reshape (tensor, new shape)

tf.cast(x, tf.float32)

Panchatcharam
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A PyTorch Workflow
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2. Build or pick a
1. Get data ready pretrained model
(turninto tensors)  (to suit your problem)

\
L"ﬁl/—» @,

2.2 Build a training loop

3. Fit the model to the 4. Evaluate the model 5. Improve through 6. Save and reload
data and make a experimentation your trained model
prediction

2.1 Pick a loss function & optimizer

51
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i 0 Install and Import

TIRUPATI

pip install torch torchvision torchaudio

import torch
import torch.nn as nn
import torch.optim as optim

Panchatcharam
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i 0 Tensor Creations and Operations
TIRUPATI

X = torch.tensor ([1l, 2, 3])
X = torch.zeros((3, 3))
X = torch.ones ((2, 2))
X = torch.randn((4, 5))
y = X + 5
Z = torch.matmul (x, x.T)
X = X.reshape (9)

Panchatcharam




IT Build Models

I UPATI

class Net (nn.Module) :
def 1nit (self):

super (). 1init ()
self.fcl = nn.Linear (10, 64)
self.fcZ2 = nn.Linear (64, 1)

def forward(self, x):
return self.fcZ2(torch.relu(self.fcl (x)))

model = Net ()

Panchatcharam




Common Layers

nn.Linear (1n features, out features)

nn.ConvZ2d(in channels, out channels, kernel size)
nn.MaxPool2d (kernel size)

nn.Dropout (p=0.5)

nn.BatchNormld (num features)

Panchatcharam




IT Compile and Train

I UPATI

for epoch 1n range (10) :
for X, y 1n dataloader:
optimizer.zero grad()
pred = model (X)
loss = criterion (pred, V)
loss.backward()
optimizer.step()

print (epoch, loss.item())

Panchatcharam




i 0 Evaluate and Predict

TIRUPATI

model.evaluate (X test, y test)

y pred = model.predict (X new)

Panchatcharam
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i 0 Optimizers

TIRUPATI

optimizer = optim.Adam (model.parameters (), 1lr=0.001)
optim.SGD (model .parameters(), 1lr=0.01, momentum=0.9)

optim.Adam (model .parameters (), 1lr=0.001)
optim.RMSprop (model.parameters (), 1lr=0.0005)

Panchatcharam




IT Activation Functions

I UPATI

nn.RelLU ()
nn.Sigmoid ()
nn.Tanh ()
nn.Softmax (dim=1)

Panchatcharam




criterion = nn.MSELoss ()
nn.CrosskEntropylLoss ()
nn.RCELoss ()
nn.BCEWi1ithLogltsLoss ()

Panchatcharam

Loss Functions

# multi-class
# binary
# sigmoid + BCE



i 0 Dataset and Data Pipeline

TIRUPATI

from torch.utils.data import Dataset, DatalLoader

class MyDataset (Dataset) :
def 1nit (self, X, y):
self.X = X
self.y = vy

loader = Dataloader (MyDataset (X, vVv),
def len (self) : batch size=32, shuffle=True)

return len (self.X)

def  getitem (self, 1dx):
return self.X[1idx], self.y[1dx]

Panchatcharam




E[I'I' Automatic Differentiation

x = torch.randn (3, requires grad=True)
y = X**2 + 3*x
v.sum () .backward ()

print (x.grad)

Panchatcharam
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i 0 A Saving and Loading

TIRUPATI

torch.save (model.state dict (), "model.pth")

model = Net ()
model.load state_dict(torch.load("model.pth"))

model.eval ()

Panchatcharam
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