

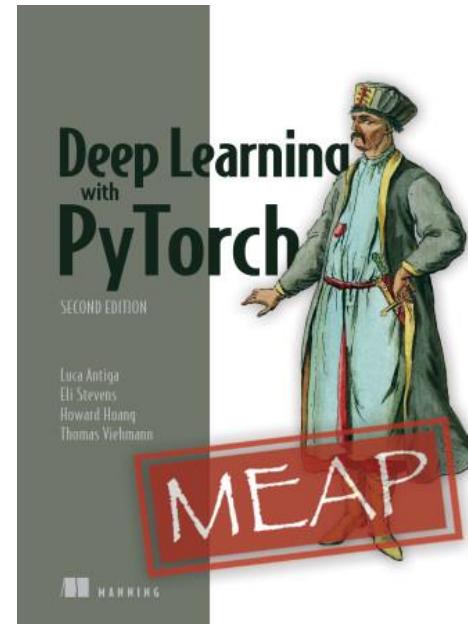
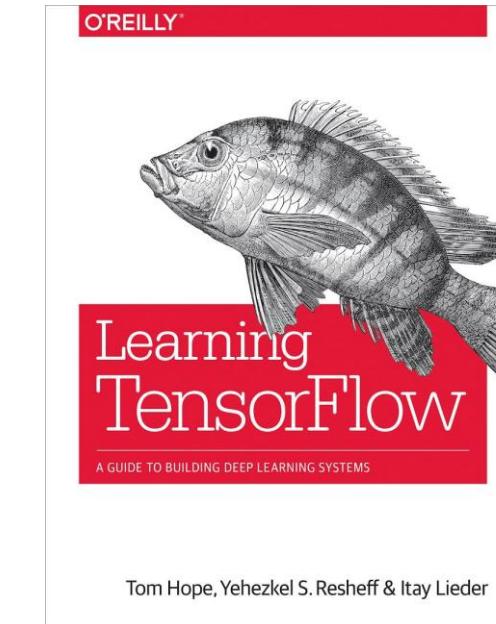
TensorFlow vs PyTorch for PINN

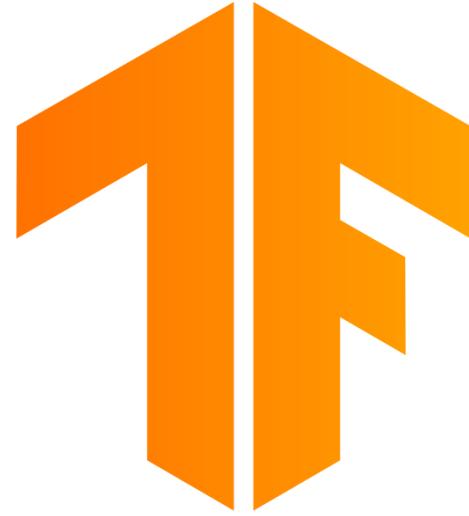
Panchatcharam Mariappan

Associate Professor

**Department of Mathematics and Statistics,
IIT Tirupati**

- Deep Learning with PyTorch, Luca, et al
- Learning Tensorflow, Tom Hope, et al
- <https://www.tensorflow.org/tutorials>
- <https://docs.pytorch.org/docs/stable/index.html>





TensorFlow

TRAINING

DEPLOYMENT

Read & Preprocess Data
tf.data, feature columns

TensorFlow Hub

tf.keras

Premade Estimators

Distribution Strategy

CPU

GPU

TPU

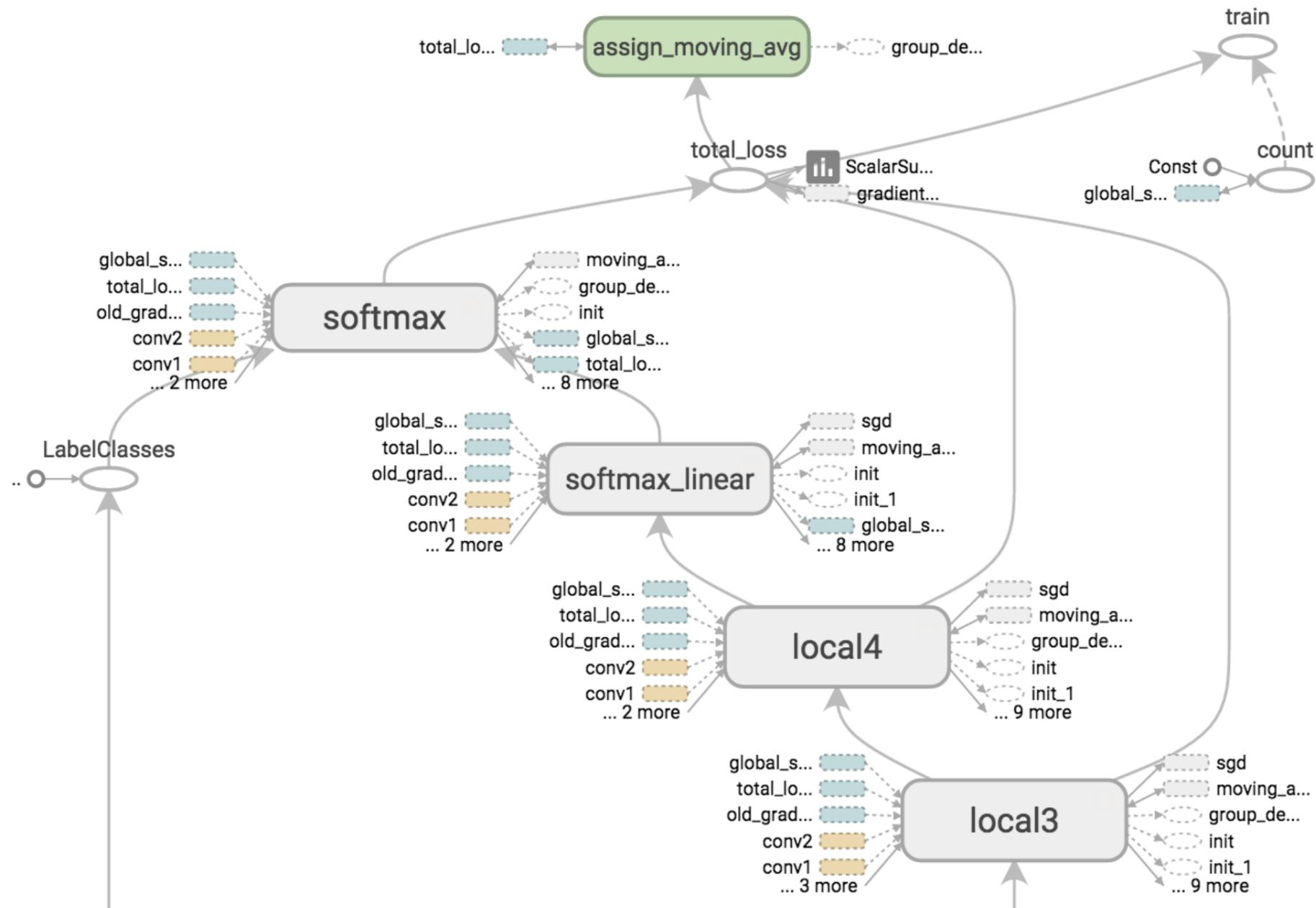
SavedModel

TensorFlow Serving
Cloud, on-prem

TensorFlow Lite
Android, iOS, Raspberry Pi

TensorFlow.js
Browser and Node Server

Other Language Bindings
C, Java, Go, C#, Rust, R, ...



Tensors = multidimensional arrays.

TensorFlow (TF) is a **numerical computation library** based on *dataflow graphs*.

A TensorFlow program describes **how data moves between operations**, each represented as a node in a graph.

Everything in TensorFlow is represented as a tensor and manipulated through computational graphs.

Tensors = multidimensional arrays.

TensorFlow is an **open-source machine learning framework** developed by **Google Brain**. It is used for building and deploying machine learning (ML) and deep learning (DL) models at scale.

Everything in TensorFlow is represented as a tensor and manipulated through computational graphs.

Computational Graphs

- Static graph (TF1.x)
- Eager execution (TF2.x)
- Optimized execution through `tf.function()`

Multi-Device Execution

TensorFlow automatically uses:

- CPU
- GPU
- TPU (Tensor Processing Unit)
- Device placement is automatic but can be controlled manually.

TF ships with **Keras**, a user-friendly tool for building neural networks.

```
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(1)
])
```

Through `tf.GradientTape()` TensorFlow automatically computes derivatives.

Supports:

- Data parallelism
- Model parallelism
- Multi-GPU / Multi-TPU clusters

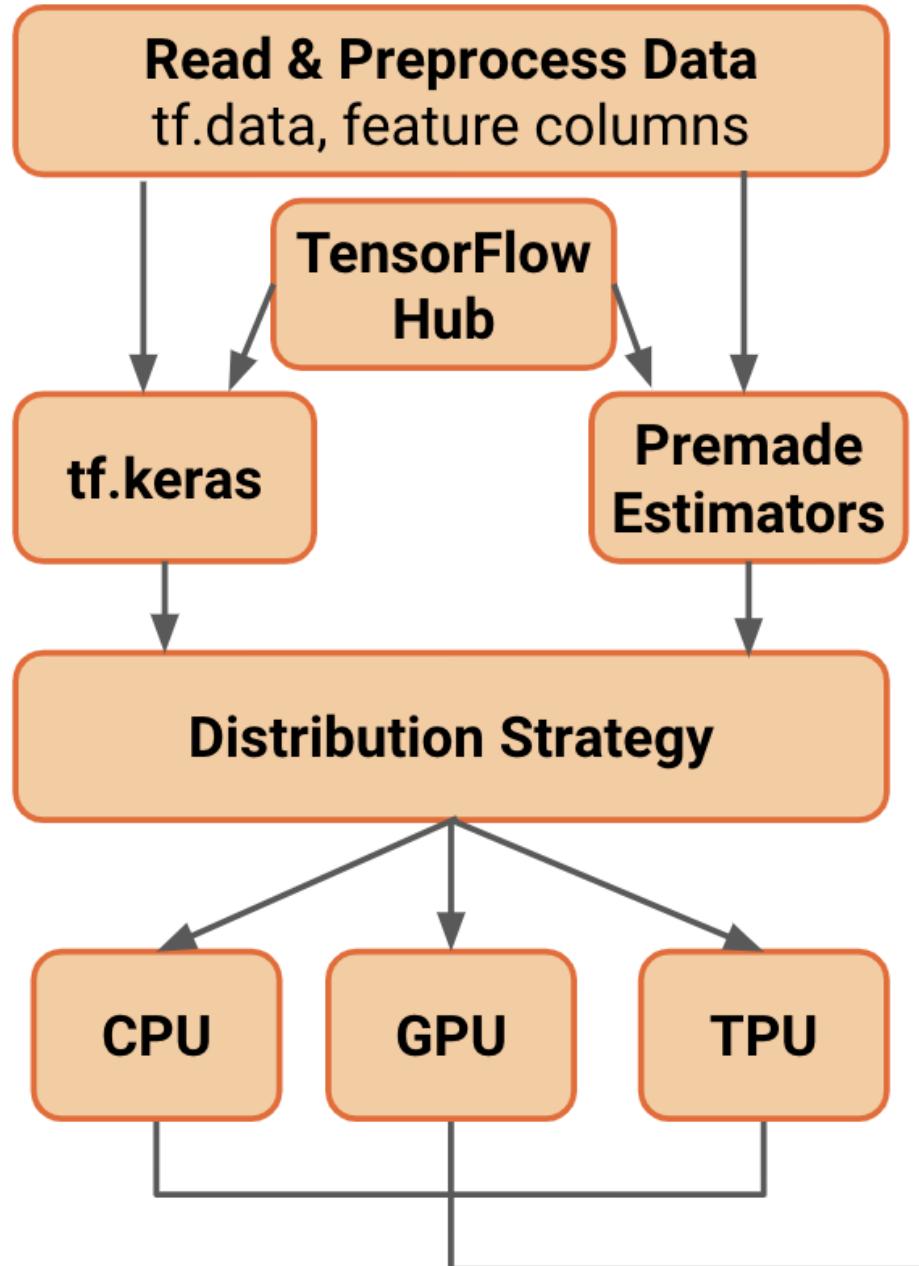
Frameworks:

- MirroredStrategy
- MultiWorkerMirroredStrategy

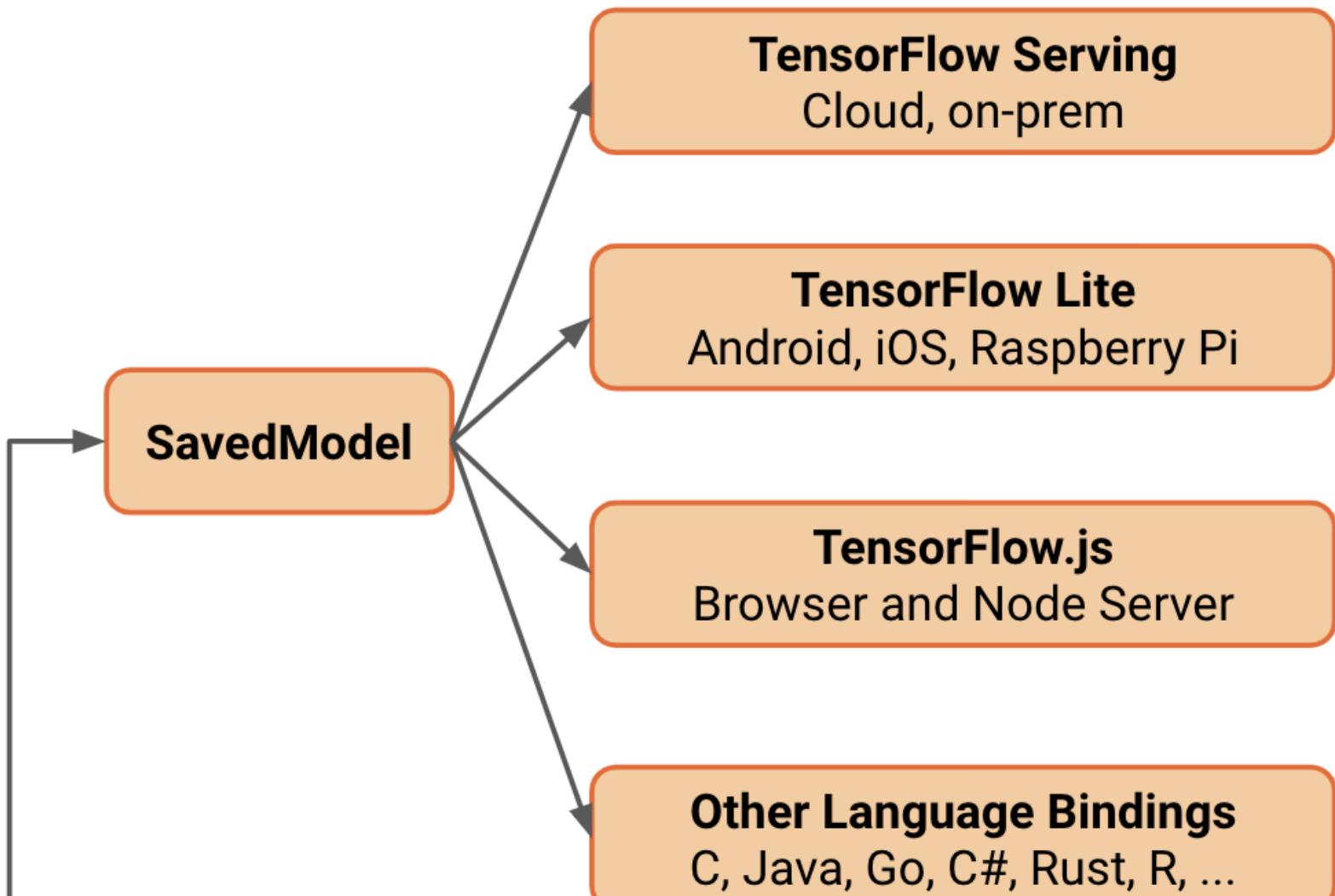
- TensorFlow Lite → mobile/IoT
- TensorFlow.js → browser
- TensorFlow Serving → production models
- TFX pipelines → end-to-end ML workflow

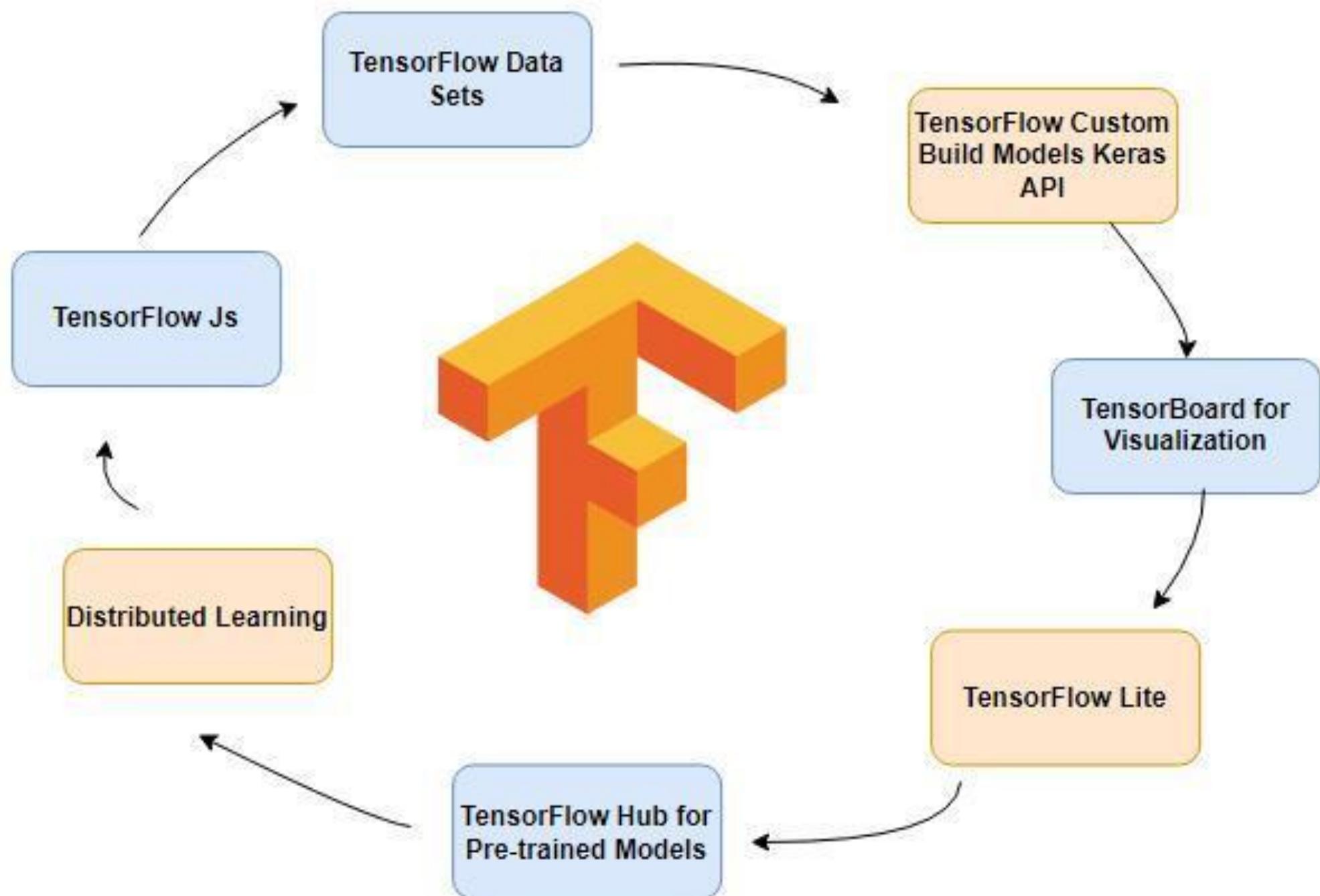
TensorFlow Architecture

TRAINING

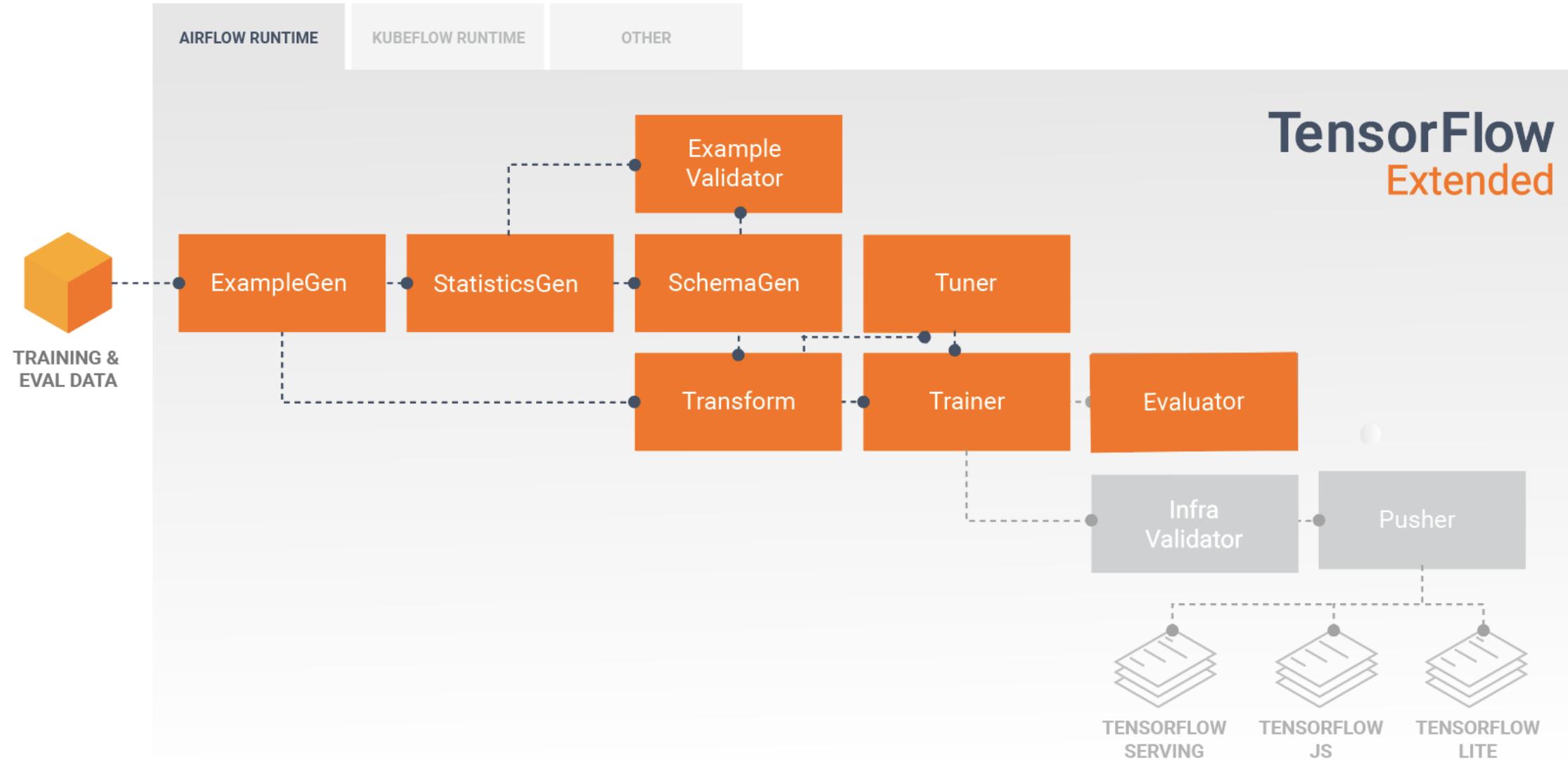


DEPLOYMENT





TensorFlow Extended



Step 1: Define a computation graph

Nodes = operations

Edges = tensors flowing between operations

Step 2: Execute graph

Backends like XLA compile and optimize the graph.

Step 3: Automatic differentiation

Used for backpropagation in neural networks.

Tensors

```
x = tf.constant([[1.0, 2.0], [3.0, 4.0]])
```

Variables

```
w = tf.Variable(tf.random.normal([2, 2]))
```

Gradient Tape

```
with tf.GradientTape() as tape:
```

```
    y = model(x)
```

```
grads =
```

```
tape.gradient(y, model.trainable_variables)
```

TensorFlow vs PyTorch

Feature	TensorFlow	PyTorch
Execution	Graph + Eager	Eager by default
Deployment	Strong (TFX, Lite)	Improving (TorchServe)
Mobile	TensorFlow Lite	PyTorch Mobile
TPU support	Excellent	Limited
Research flexibility	Moderate	Very flexible

TensorFlow is strong in **production**;
PyTorch is strong in **research**.

TensorFlow is commonly used for:

- Physics-Informed Neural Networks (PINNs)
- Auto-differentiation of PDE residuals
- High-order derivatives
- PDE solvers via
`tf.GradientTape(persistent=True)`

```
with tf.GradientTape(persistent=True) as t2:  
    with tf.GradientTape(persistent=True) as t1:  
        u = model(x)  
        du_dx = t1.gradient(u, x)  
        d2u_dx2 = t2.gradient(du_dx, x)
```

When to Use TensorFlow

- You want mobile/web deployment
- You need TPU acceleration
- You are developing production-grade models
- You want strong pipeline support (TFX)
- You work with PINNs or differential programming

When Not to Use TensorFlow

Consider PyTorch if:

- You do rapid prototyping
- You want very flexible autograd
- Your workflow is purely research (academia)

TensorFlow vs PyTorch

101 Blockchains | TENSORFLOW VS PYTORCH

Criteria	TensorFlow	PyTorch
Working Mechanism	Static graphs	Dynamic graphs
Visualization	TensorBoard offers an in-built visualization tool for TensorFlow.	Visdom serves as the visualization library with minimalistic features.
Definition of Simple Neural Networks	You can use the 'torch.nn' package for importing layers to build neural networks.	TensorFlow uses the Keras framework as its backend for declaring layers.
Production Deployment	TensorFlow serving helps in faster production deployment.	PyTorch needs additional frameworks like Django or Flask as backend servers.
Distributed Training	TensorFlow requires manual programming for distributed training.	PyTorch features a uniform increase in training accuracy.
Accuracy	TensorFlow has the same accuracy as PyTorch.	ChatGPT offers a free version along with a \$ 20 monthly subscription with additional benefits.
Training Time and Memory Consumption	TensorFlow has an average training time of 11.19 seconds. It consumes 1.7GB of RAM during training.	PyTorch has an average training time of 7.67 seconds. It consumes 3.5 GB of RAM during training.

Created by 101blockchains.com

- Originally designed for production-scale deployment.
- Uses static graphs (TF1) + eager execution (TF2).
- Strong integration with Google's ecosystem (TPU, TFX, TensorFlow Lite). **TensorFlow**

- Designed for research flexibility.
- Uses eager execution by default (define-by-run).
- Most popular in academia and rapid experimentation. **PyTorch**

TensorFlow → production-first
PyTorch → research-first

- Graph-based;
- optimized execution
- Functions wrapped with `@tf.function`
- Requires more boilerplate

TensorFlow

- Pythonic, easy-to-read code
- Dynamic graph: operations executed immediately
- Very intuitive for debugging

PyTorch

PyTorch is easier to write and debug.
TensorFlow is more optimized for execution.

Model: TensorFlow vs PyTorch

```
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(1)
])
```

TensorFlow

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(10, 64)
        self.fc2 = nn.Linear(64, 1)
```

Keras = simpler
PyTorch = more control & transparency

```
def forward(self, x):
    return self.fc2(F.relu(self.fc1(x)))
```

PyTorch

AutoGrad: TensorFlow vs PyTorch

- Uses `tf.GradientTape`
- Supports higher-order derivatives
- Sometimes harder to compute complex derivatives in PDE problems

TensorFlow

`torch.autograd` is extremely flexible
Better for custom loss functions, PDEs, PINNs

PyTorch

PyTorch autograd is more flexible and intuitive
TensorFlow autograd is more optimized for hardware

Community and Popularity: TensorFlow vs PyTorch

Industry:

TensorFlow widely used by Google, Airbnb, Twitter, etc.

TensorFlow

Research papers:

PyTorch dominates (>80% of deep learning papers)

PyTorch

Performance: TensorFlow vs PyTorch

- Faster for static graphs
- XLA optimizations
- Better for large-scale production

TensorFlow

Slightly slower (dynamic execution)

But JIT improves performance

PyTorch 2.0 uses TorchDynamo + AOTAutograd → significant speedups

PyTorch

Performance gap is shrinking; both are comparable.

- For PINNs in production TPU acceleration for large
- PDE parameter sweeps
- TF2 + Keras = clean high-level API

TensorFlow

- **Easy autograd for PDE residuals**
- **Better control over backprop graph**
- **Faster prototyping for research**
- **JAX/PyTorch preferred in recent SciML papers**

PyTorch

Research PINNs → PyTorch

Industrial PINNs / large simulations → TensorFlow or JAX

Feature	TensorFlow	PyTorch
Execution	Static + Eager	Dynamic
Ease of use	Moderate	Very easy
Debugging	Harder	Very easy
Autograd	Strong but complex	Best-in-class
Deployment	Excellent (TFX, Lite, JS)	Good (TorchServe, ONNX)
TPU support	Best	Moderate
Research adoption	Moderate	Very High
Production adoption	Very High	Moderate
PINN suitability	Good	Excellent for research

Which One Should I Choose?

Choose PyTorch if:

- You are doing research
- You work on PINNs, PDEs, SciML
- You want clean, Pythonic code
- You need fast debugging

Choose TensorFlow if:

- You want end-to-end ML pipelines
- You deploy to mobile or web
- You want TPU acceleration
- You work in production environments

TensorFlow CheatSheet

```
pip install tensorflow
```

```
import tensorflow as tf  
from tensorflow import keras
```

```
x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
x = tf.Variable(tf.random.normal([3, 3]))
```

```
# Basic ops
y = x + 5
z = tf.matmul(x, tf.transpose(x))
```

```
model = keras.Sequential([
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(1)
])
```

```
inputs = keras.Input(shape=(10, ))
h = keras.layers.Dense(32,
activation="relu")(inputs)
outputs = keras.layers.Dense(1)(h)

model = keras.Model(inputs, outputs)
```

```
model.compile(  
    optimizer='adam',  
    loss='mse',  
    metrics=[ 'mae' ]  
)  
  
model.fit(x_train, y_train, epochs=10,  
batch_size=32)
```

```
model.evaluate(X_test, y_test)
```

```
y_pred = model.predict(X_new)
```

```
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
opt = tf.keras.optimizers.SGD(0.01, momentum=0.9)
```

```
tf.nn.relu(x)  
tf.nn.sigmoid(x)  
tf.nn.tanh(x)  
tf.nn.softmax(x)
```

```
keras.layers.Dense(64, activation='relu')
```

```
keras.losses.MeanSquaredError()  
keras.losses.BinaryCrossentropy()  
keras.losses.CategoricalCrossentropy()  
keras.losses.MeanAbsoluteError()
```

```
dataset = tf.data.Dataset.from_tensor_slices((X, y))  
dataset = dataset.shuffle(1000).batch(32).prefetch(1)  
  
raw_ds = tf.data.TFRecordDataset('data.tfrecord')
```

```
x = tf.Variable(3.0)
```

```
with tf.GradientTape() as tape:
```

```
    y = x**2 + 2*x + 1
```

```
dy_dx = tape.gradient(y, x)
```

```
grads = tape.gradient(loss,  
model.trainable_variables)
```

```
for epoch in range(10):
    for x_batch, y_batch in dataset:
        with tf.GradientTape() as tape:
            y_pred = model(x_batch, training=True)
            loss = tf.reduce_mean(tf.square(y_batch - y_pred))

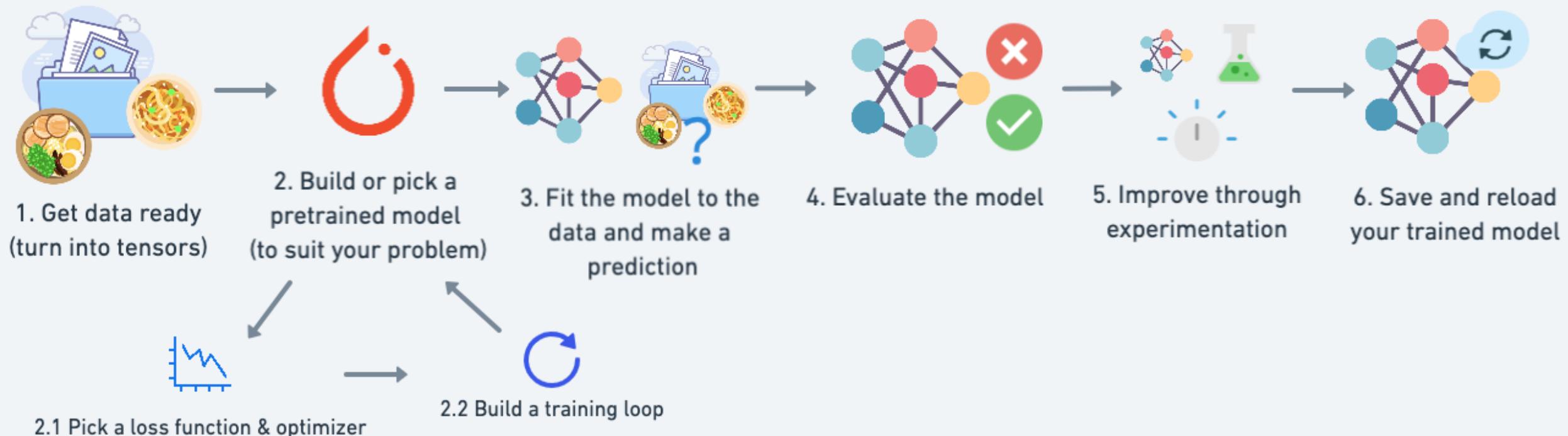
        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))
```

```
model.save("model.h5")
model = keras.models.load_model("model.h5")
```

```
tf.random.set_seed(42)
tf.keras.utils.plot_model(model, show_shapes=True)
tf.reduce_sum(x)
tf.argmax(pred, axis=1)
tf.reshape(tensor, new_shape)
tf.cast(x, tf.float32)
```


PyTorch CheatSheet

A PyTorch Workflow



```
pip install torch torchvision torchaudio
```

```
import torch
import torch.nn as nn
import torch.optim as optim
```

```
x = torch.tensor([1, 2, 3])  
x = torch.zeros((3, 3))  
x = torch.ones((2, 2))  
x = torch.randn((4, 5))
```

```
y = x + 5  
z = torch.matmul(x, x.T)  
x = x.reshape(9)
```

```
class Net(nn.Module):  
    def __init__(self):  
        super().__init__()  
        self.fc1 = nn.Linear(10, 64)  
        self.fc2 = nn.Linear(64, 1)  
  
    def forward(self, x):  
        return self.fc2(torch.relu(self.fc1(x)))  
  
model = Net()
```

```
nn.Linear(in_features, out_features)
nn.Conv2d(in_channels, out_channels, kernel_size)
nn.MaxPool2d(kernel_size)
nn.Dropout(p=0.5)
nn.BatchNorm1d(num_features)
```

```
for epoch in range(10):  
    for X, y in dataloader:  
        optimizer.zero_grad()  
        pred = model(X)  
        loss = criterion(pred, y)  
        loss.backward()  
        optimizer.step()  
  
    print(epoch, loss.item())
```

```
model.evaluate(X_test, y_test)
```

```
y_pred = model.predict(X_new)
```

```
optimizer = optim.Adam(model.parameters(), lr=0.001)

optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optim.Adam(model.parameters(), lr=0.001)
optim.RMSprop(model.parameters(), lr=0.0005)
```

```
nn.ReLU()  
nn.Sigmoid()  
nn.Tanh()  
nn.Softmax(dim=1)
```

```
criterion = nn.MSELoss()  
nn.CrossEntropyLoss()          # multi-class  
nn.BCELoss()                  # binary  
nn.BCEWithLogitsLoss()         # sigmoid + BCE
```

```
from torch.utils.data import Dataset, DataLoader

class MyDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, idx):
        return self.X[idx], self.y[idx]
```

```
        loader = DataLoader(MyDataset(X, y),
batch_size=32, shuffle=True)
```

```
x = torch.randn(3, requires_grad=True)
y = x**2 + 3*x
y.sum().backward()
print(x.grad)
```

```
torch.save(model.state_dict(), "model.pth")
model = Net()
model.load_state_dict(torch.load("model.pth"))
model.eval()
```