IIIIIIIIIIIIIIIIIIIIIIIIIIIII

TIRUPATI

TensorFlow vs PyTorch for PINN
Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,
IIT Tirupati

Panchatcharam

el SN dwerr fredf

0 0 A G References
TIRUPATI

» Deep Learning with PyTirch, Luca, et al
» Learning Tensorflow, Tom Hope, et al
» https://www.tensorflow.org/tutorials

» https://docs.pytorch.org/docs/stable/index.html

OREILLY ‘

)

Learninlg %
Tensorklow

O BUILDING DEEP LEARNING SYSTEMS

Tom Hope, Yehezkel S. Resheff & Itay Lieder

Panchatcharam

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/tutorials

T

lensorFlow

TRAINING

Read & Preprocess Data
tf.data, feature columns

TensorFlow
Hub
Premade
[tf.keras J [Estimators]

[Distribution Strategy

e
EaEa

DEPLOYMENT

TensorFlow Serving
Cloud, on-prem

—>[SavedModel

TensorFlow Lite
Android, iOS, Raspberry Pi

TensorFlow.js
Browser and Node Server

Other Language Bindings
C, Java, Go, C#, Rust, R, ...

— T T

conv2

LabelClasses

total_lo... :::::::-'ﬂG\ssign_moving_ang " group_de...

' moving_a...

~ group_de...
softmax Init
global_s... - sgd
total_lo... ' moving_a.
old_grad... ~init
conv2
convl i’
... 2 more
global_s... ©77 700 - sgd
totaIJo...) ... moving_a...
old_grad... » . group_de...
conv2 SO0 init
convl S it
... 9 more
global_s...
total_lo... .00 N e ' moving_a...
old_grad... |°ca|3 ~ group_de...
conv2 - init
conv ~init1
T ... 9 more

WR drenfiret dwera freufa

i 0 TensorFlow

TIRUPATI

Tensors = multidimensional arrays.

TensorFlow (TF) is a numerical computation library based on
dataflow graphs.

A TensorFlow program describes how data moves between
operations, each represented as a node in a graph.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.

Panchatcharam

WR drenfiret dwera freufa

i 0 TensorFlow

TIRUPATI

Tensors = multidimensional arrays.

TensorFlow is an open-source machine learning framework
developed by Google Brain. It is used for building and deploying
machine learning (ML) and deep learning (DL) models at scale.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.

Panchatcharam

TN
1
11

()

iu I\ "'\ Features

TIRUPATI

Computational Graphs

e Static graph (TF1.x)
* Eager execution (TF2.x)
 Optimized execution through tf. function ()

Multi-Device Execution

TensorFlow automatically uses:

« CPU

e GPU

 TPU (Tensor Processing Unit)

* Device placement is automatic but can be controlled manually.

Panchatcharam

TR drenfet dwere ek
1] [1]
1] LA 1 1
i & 6 Keras
1 1 ||

TIRUPATI

TF ships with Keras, a user-friendly tool for building neural networks.

model = tf.keras.Sequential (]
tf.keras.layers.Dense (64, activation='relu'),
tf.keras.layers.Dense (1)

1)

Panchatcharam

—J:

I\ '"\ Automatic Differentiation

TIRUPATI

Through tf.cradientTape () TensorFlow automatically computes derivatives.

Panchatcharam

oy N = 0y . =
HINCTT HIEITHTDT F8T EIG|
11

I [ljf\lﬂﬂ Distributed Training

TIRUPATI

Supports:

e Data parallelism

* Model parallelism
 Multi-GPU / Multi-TPU clusters
Frameworks:

* MirroredStrategy

* MultiWorkerMirroredStrategy

Panchatcharam

IIT Deployment Ecosystem

* TensorFlow Lite - mobile/loT

* TensorFlow.js - browser

* TensorFlow Serving - production models
* TFX pipelines - end-to-end ML workflow

Panchatcharam

TensorFlow Architecture

TRAINING

Read & Preprocess Data
tf.data, feature columns

TensorFlow
Hub
Premade
[tf.keras J [Estimators]

[Distribution Strategy

e
EaEa

DEPLOYMENT

TensorFlow Serving
Cloud, on-prem

—>[SavedModel

TensorFlow Lite
Android, iOS, Raspberry Pi

TensorFlow.js
Browser and Node Server

Other Language Bindings
C, Java, Go, C#, Rust, R, ...

— T T

TensorFlow Data

Sets g

p
TensorFlow Custom
Build Models Keras
API
TensorFlow Js
TensorBoard for
& Visualization
Distributed Learning & -
-

TensorFlow Lite

\ TensorFlow Hub for 4____/

Pre-trained Models

AIRFLOW RUNTIME KUBEFLOW RUNTIME OTHER

. TensorFlow
Validator Extended

StatisticsGen SchemaGen

TRAINING &
EVAL DATA

Transform Evaluator

TENSORFLOW TENSORFLOW TENSORFLOW
SERVING JS LITE

Gk ﬁ\hqi?\

hi |.]]|\ i

TIRUPATI

How TensorFlow Works (Step-by-Step)

Step 1: Define a computation graph

Nodes = operations
Edges = tensors flowing between operations

Step 2: Execute graph
Backends like XLA compile and optimize the graph.

Step 3: Automatic differentiation

Used for backpropagation in neural networks.

Panchatcharam

I hIT TensorFlow: Programming Model

TIRUPATI

Tensors
X = tf.constant([[1.0, 2.0], [3.0, 4.0]1])

Variables
w = tf.Variable (tf.random.normal ([2, 2]))

Gradient Tape

with tf.GradientTape () as tape:
y = model (x)
grads =
tape.gradient (y,model.trainable variables)

Panchatcharam

UPATI

-
A

Feature

TensorFlow

TensorFlow vs PyTorch

PyTorch

Execution Graph + Eager Eager by default
Deployment Strong (TFX, Lite) Improving (TorchServe)
Mobile TensorFlow Lite PyTorch Mobile

TPU support Excellent Limited

Research flexibility Moderate Very flexible

Panchatcharam

TensorFlow is strong in production;
PyTorch is strong in research.

el SN dwerr fredf

LT TensorFlow for PINNs and PDEs

TIRUPATI

TensorFlow is commonly used for:

*Physics-Informed Neural Networks (PINNs)
*Auto-differentiation of PDE residuals

*High-order derivatives
*PDE solvers via

tf.GradlientTape (persistent=True)

Panchatcharam

el SN dwerr fredf

LT TensorFlow for PINNs and PDEs

TIRUPATI

with tf.GradientTape (persistent=True) as t2:
with tf.GradientTape (persistent=True) as tl:
u = model (x)
du dx = tl.gradient (u, Xx)
dZ2u dx2Z2 = tZ.gradient (du dx, X)

Panchatcharam

el SN dwerr fredf

o 0 When to Use TensorFlow

TIRUPATI

You want mobile/web deployment
You need TPU acceleration

You are developing production-grade models
You want strong pipeline support (TFX)
You work with PINNs or differential programming

Panchatcharam

el SN dwerr fredf

i i i fi When Not to Use TensorFlow

TIRUPATI

Consider PyTorch if:
* You do rapid prototyping

* You want very flexible autograd
* Your workflow is purely research (academia)

Panchatcharam

TensorFlow vs PyTorch

II

TIRUPATI

Panchatcharam

TensorFlow vs PyTorch

¥ 101 Blockchains | TENSORFLOW VS PYTORCH

Criteria TensorFlow

Working g
Static graphs
Mechanism grap
TensorBoard offers an in-built
visualization tool for
TensorFlow.

Visualization

. You can use the ‘torch.nn’
Definition of Simple |,,\qge for importing layers
Neural Networks to build neural networks.

Production
Deployment

TensorFlow serving helps in
faster production deployment.

TensorFlow requires manual
programming for distributed
training.

Distributed
Training

TensorFlow has the same

Accuracy accuracy as PyTorch.

TensorFlow has an average
training time of 11.19 seconds. It
consumes 1.7GB of RAM during

training.

Training Time
and Memory
Consumption

PyTorch

Dynamic graphs

Visdom serves as the
visualization library with
minimalistic features.

TensorFlow uses the Keras
framework as its backend for
declaring layers.

PyTorch needs additional
frameworks like Django or
Flask as backend servers.

PyTorch features a uniform
increase in training accuracy.

ChatGPT offers a free version
along with a $ 20 monthly
subscription with additional
benefits.

PyTorch has an average
training time of 7.67 seconds.
It consumes 3.5 GB of RAM
during training.

Created by 101blockchains.com

@[IT TensorFlow vs PyTorch

TIRUPATI

* Originally designed for production-scale deployment.
» Uses static graphs (TF1) + eager execution (TF2).
 Strong integration with Google’s ecosystem (TPU, TFX, TensorFlow Lite). TensorFlow

* Designed for research flexibility.
e Uses eager execution by default (define-by-run).
 Most popular in academia and rapid experimentation. PyTorch

TensorFlow = production-first
PyTorch = research-first

Panchatcharam

et grenfrel Sweme o ql‘\

i 0

TIRUPATI

Programming: TensorFlow vs PyTorch

* Graph-based;

e optimized execution

* Functions wrapped with @tf.function

* Requires more boilerplate TensorFlow

e Pythonic, easy-to-read code
 Dynamic graph: operations executed immediately
* Very intuitive for debugging PyTorch

PyTorch is easier to write and debug.
TensorFlow is more optimized for execution.

Panchatcharam

et grenfrel Sweme o ql‘\

W

TIRUPATI

Model: TensorFlow vs PyTorch

model = tf.keras.Sequential ([
tf.keras.layers.Dense (64, activation="relu"),
tf.keras.layers.Dense (1)

1) TensorFlow
class Net (nn.Module) : Keras = simpler
def ~_ 1nit (self): PyTorch = more control & transparency
super () . 1nit ()

self.fcl = nn.Linear (10, o©64)
self.fc?2 = nn.Linear (64, 1)

def forward(self, Xx):
return self.fc?2 (F.relu(self.fcl(x))) PyTorch

Panchatcharam

TIR PATI

AutoGrad: TensorFlow vs PyTorch

e Uses tf.GradientTape TensorFlow
« Supports higher-order derivatives
« Sometimes harder to compute complex derivatives in PDE problems

torch.autograd is extremely flexible
Better for custom loss functions, PDEs, PINNs PyTorch

PyTorch autograd is more flexible and intuitive
TensorFlow autograd is more optimized for hardware

Panchatcharam

ﬂ]IT Community and Popularity: TensorFlow vs PyTorch

TIRUPATI

Industry: TensorFlow
TensorFlow widely used by Google, Airbnb, Twitter, etc.

Research papers:
PyTorch dominates (>80% of deep learning papers) PyTorch

Panchatcharam

@[IT Performance: TensorFlow vs PyTorch

TIRUPATI

* Faster for static graphs TensorFlow
* XLA optimizations
* Better for large-scale production

Slightly slower (dynamic execution)
But JIT improves performance PyTorch
PyTorch 2.0 uses TorchDynamo + AOTAutograd - significant speedups

Performance gap is shrinking; both are comparable.

Panchatcharam

et grenfrel Sweme o ql‘\

W

TIRUPATI

PINN: TensorFlow vs PyTorch

* For PINNs in productionTPU acceleration for large TensorFlow

* PDE parameter sweeps
* TF2 + Keras = clean high-level API

* Easy autograd for PDE residuals
* Better control over backprop graph PyTorch

* Faster prototyping for research
» JAX/PyTorch preferred in recent SciML papers

Research PINNs = PyTorch
Industrial PINNs / large simulations - TensorFlow or JAX

Panchatcharam

vt gt geers foreafr

i i i Summary

TIRUPATI
Feature TensorFlow PyTorch
Execution Static + Eager Dynamic
Ease of use Moderate Very easy
Debugging Harder Very easy
Autograd Strong but complex Best-in-class
Deployment Excellent (TFX, Lite, JS) Good (TorchServe, ONNX)
TPU support Best Moderate
Research adoption Moderate Very High
Production adoption Very High Moderate
PINN suitability Good Excellent for research

Panchatcharam

WR drenfiret dwera freufa

i 0 Which One Should | Choose?

TIRUPATI

Choose PyTorch if:
You are doing research

You work on PINNs, PDEs, SciML
You want clean, Pythonic code
You need fast debugging

Choose TensorFlow if:
* You want end-to-end ML pipelines

* You deploy to mobile or web
* You want TPU acceleration
* You work in production environments

Panchatcharam

TensorFlow CheatSheet

i 0 Install and Import

TIRUPATI

pip install tensorflow

import tensorflow as tf
from tensorflow i1mport keras

Panchatcharam

0 Ty 0y . =
HIXCATT JITHTRT =11 EIG|
11

0 0 & Tensor Creations and Operations

IRUPATI

"=
A

x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
X = tf.Variable(tf.random.normal ([3, 3]))

Basic ops
y = X + 5
z = tf.matmul (x, tf.transpose(x))

Panchatcharam

Build Models

TIRUPATI
model = keras.Sequential (]
keras.layers.Dense (64, activation='relu'),
keras.layers.Dense (1)
1)

Panchatcharam

0 Ty 0y . [y =
HINCTT HIKITHTDT FRT KO YI
11

i 0 Functional

TIRUPATI

inputs = keras.Input (shape=(10,))

h = keras.layers.Dense (32,
activation="relu") (1nputs)

outputs = keras.layers.Dense (1) (h)
model = keras.Model (1nputs, outputs)

Panchatcharam

0 Ty 0y . [y =
HIXCATT JITHTRT =TT KoY
11

i 0 Compile and Train

TIRUPATI

model.compille (
optimizer='adam',
loss="mse',
metrics=["'mae']

model.fi1t (X train, y train, epochs=10,
batch size=32)

Panchatcharam

i 0 Evaluate and Predict

TIRUPATI

model.evaluate (X test, y test)

y pred = model.predict (X new)

Panchatcharam

Optimizers

opt = tf.keras.optimizers.Adam(learning rate=0.001)
opt = tf.keras.optimizers.SGD(0.01, momentum=0.9)

Panchatcharam

i [Activation Functions

IRUPATI

= 3=
Py

tf.nn.relu(x)
tf.nn.sigmoid (x)
tf.nn.tanh (x)
tf.nn.softmax (x)

keras.layers.Dense (64, activation='relu')

Panchatcharam

Loss Functions

keras.losses.MeanSquaredError ()
keras.losses.BinaryCrossentropy ()
keras.losses.CategoricalCrossentropy ()
keras.losses.MeanAbsoluteError ()

Panchatcharam

@[IT Dataset and Data Pipeline

TIRUPATI

dataset = tf.data.Dataset.from tensor slices((X, y))
dataset = dataset.shuffle(1000) .batch(32) .prefetch (1)

raw _ds = tf.data.TFRecordDataset ('data.tfrecord')

Panchatcharam

x = tf.Variable (3.0)

with tf.GradientTape () as tape:
y = X**2 + 2*x + 1

dy dx = tape.gradient(y, Xx)

grads = tape.gradient (loss,
model.trainable variables)

Panchatcharam

Automatic Differentiation

i 0 Training Loop

TIRUPATI

for epoch in range(10):
for x batch, y batch in dataset:
with tf.GradientTape () as tape:
y pred = model (x batch, training=True)
loss = tf.reduce mean(tf.square(y batch - y pred))

grads = tape.gradient (loss, model.trainable variables)
optimizer.apply gradients(zip(grads, model.trainable variables))

Panchatcharam

i 0 A Saving and Loading

TIRUPATI

model.save ("model.hd")
model = keras.models.load model ("model.hd")

Panchatcharam

i 0 Useful One-Liners

TIRUPATI

tf.random.set seed(42)
tf.keras.utils.plot model (model, show shapes=True)
tf.reduce sum(x)

tf.argmax (pred, axis=1)

tf.reshape (tensor, new shape)

tf.cast(x, tf.float32)

Panchatcharam

O PyTorch

PyTorch CheatSheet

A PyTorch Workflow

> —_ _ —_—
T O

'
=/

/

2. Build or pick a
1. Get data ready pretrained model
(turninto tensors) (to suit your problem)

\
L"ﬁl/—» @,

2.2 Build a training loop

3. Fit the model to the 4. Evaluate the model 5. Improve through 6. Save and reload
data and make a experimentation your trained model
prediction

2.1 Pick a loss function & optimizer

51

0 Ty 0y . [y =
HIXCATT JITHTRT =TT KoY

i 0 Install and Import

TIRUPATI

pip install torch torchvision torchaudio

import torch
import torch.nn as nn
import torch.optim as optim

Panchatcharam

0 Ty 0y . =
HIXCATT JITHTRT =11 EIG|
11

i 0 Tensor Creations and Operations
TIRUPATI

X = torch.tensor ([1l, 2, 3])
X = torch.zeros((3, 3))
X = torch.ones ((2, 2))
X = torch.randn((4, 5))
y = X + 5
Z = torch.matmul (x, x.T)
X = X.reshape (9)

Panchatcharam

IT Build Models

I UPATI

class Net (nn.Module) :
def 1nit (self):

super (). 1init ()
self.fcl = nn.Linear (10, 64)
self.fcZ2 = nn.Linear (64, 1)

def forward(self, x):
return self.fcZ2(torch.relu(self.fcl (x)))

model = Net ()

Panchatcharam

Common Layers

nn.Linear (1n features, out features)

nn.ConvZ2d(in channels, out channels, kernel size)
nn.MaxPool2d (kernel size)

nn.Dropout (p=0.5)

nn.BatchNormld (num features)

Panchatcharam

IT Compile and Train

I UPATI

for epoch 1n range (10) :
for X, y 1n dataloader:
optimizer.zero grad()
pred = model (X)
loss = criterion (pred, V)
loss.backward()
optimizer.step()

print (epoch, loss.item())

Panchatcharam

i 0 Evaluate and Predict

TIRUPATI

model.evaluate (X test, y test)

y pred = model.predict (X new)

Panchatcharam

0 Ty 0y . [y =
HINCTT HIKITHTDT FRT KO YI
11

i 0 Optimizers

TIRUPATI

optimizer = optim.Adam (model.parameters (), 1lr=0.001)
optim.SGD (model .parameters(), 1lr=0.01, momentum=0.9)

optim.Adam (model .parameters (), 1lr=0.001)
optim.RMSprop (model.parameters (), 1lr=0.0005)

Panchatcharam

IT Activation Functions

I UPATI

nn.RelLU ()
nn.Sigmoid ()
nn.Tanh ()
nn.Softmax (dim=1)

Panchatcharam

criterion = nn.MSELoss ()
nn.CrosskEntropylLoss ()
nn.RCELoss ()
nn.BCEWi1ithLogltsLoss ()

Panchatcharam

Loss Functions

multi-class
binary
sigmoid + BCE

i 0 Dataset and Data Pipeline

TIRUPATI

from torch.utils.data import Dataset, DatalLoader

class MyDataset (Dataset) :
def 1nit (self, X, y):
self.X = X
self.y = vy

loader = Dataloader (MyDataset (X, vVv),
def len (self) : batch size=32, shuffle=True)

return len (self.X)

def getitem (self, 1dx):
return self.X[1idx], self.y[1dx]

Panchatcharam

E[I'I' Automatic Differentiation

x = torch.randn (3, requires grad=True)
y = X**2 + 3*x
v.sum () .backward ()

print (x.grad)

Panchatcharam

0 Ty 0y . [y =
HIXCATT JITHTRT =TT KoY

i 0 A Saving and Loading

TIRUPATI

torch.save (model.state dict (), "model.pth")

model = Net ()
model.load state_dict(torch.load("model.pth"))

model.eval ()

Panchatcharam

	Slide 1: TensorFlow vs PyTorch for PINN
	Slide 2: References
	Slide 3
	Slide 4
	Slide 5
	Slide 6: TensorFlow
	Slide 7: TensorFlow
	Slide 8: Features
	Slide 9: Keras
	Slide 10: Automatic Differentiation
	Slide 11: Distributed Training
	Slide 12: Deployment Ecosystem
	Slide 13: TensorFlow Architecture
	Slide 14
	Slide 15
	Slide 16
	Slide 17: How TensorFlow Works (Step-by-Step)
	Slide 18: TensorFlow: Programming Model
	Slide 19: TensorFlow vs PyTorch
	Slide 20: TensorFlow for PINNs and PDEs
	Slide 21: TensorFlow for PINNs and PDEs
	Slide 22: When to Use TensorFlow
	Slide 23: When Not to Use TensorFlow
	Slide 24: TensorFlow vs PyTorch
	Slide 25: TensorFlow vs PyTorch
	Slide 26: TensorFlow vs PyTorch
	Slide 27: Programming: TensorFlow vs PyTorch
	Slide 28: Model: TensorFlow vs PyTorch
	Slide 29: AutoGrad: TensorFlow vs PyTorch
	Slide 30: Community and Popularity: TensorFlow vs PyTorch
	Slide 31: Performance: TensorFlow vs PyTorch
	Slide 32: PINN: TensorFlow vs PyTorch
	Slide 33: Summary
	Slide 34: Which One Should I Choose?
	Slide 35: TensorFlow CheatSheet
	Slide 36: Install and Import
	Slide 37: Tensor Creations and Operations
	Slide 38: Build Models
	Slide 39: Functional
	Slide 40: Compile and Train
	Slide 41: Evaluate and Predict
	Slide 42: Optimizers
	Slide 43: Activation Functions
	Slide 44: Loss Functions
	Slide 45: Dataset and Data Pipeline
	Slide 46: Automatic Differentiation
	Slide 47: Training Loop
	Slide 48: Saving and Loading
	Slide 49: Useful One-Liners
	Slide 50: PyTorch CheatSheet
	Slide 51
	Slide 52: Install and Import
	Slide 53: Tensor Creations and Operations
	Slide 54: Build Models
	Slide 55: Common Layers
	Slide 56: Compile and Train
	Slide 57: Evaluate and Predict
	Slide 58: Optimizers
	Slide 59: Activation Functions
	Slide 60: Loss Functions
	Slide 61: Dataset and Data Pipeline
	Slide 62: Automatic Differentiation
	Slide 63: Saving and Loading

