
Panchatcharam

TensorFlow vs PyTorch for PINN

1

Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,

IIT Tirupati

Panchatcharam

References

➢Deep Learning with PyTirch, Luca, et al

➢Learning Tensorflow, Tom Hope, et al

➢https://www.tensorflow.org/tutorials

➢https://docs.pytorch.org/docs/stable/index.html

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/tutorials

3

4

5

Panchatcharam

TensorFlow

TensorFlow (TF) is a numerical computation library based on
dataflow graphs.

A TensorFlow program describes how data moves between
operations, each represented as a node in a graph.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.

Tensors = multidimensional arrays.

Panchatcharam

TensorFlow

TensorFlow is an open-source machine learning framework
developed by Google Brain. It is used for building and deploying
machine learning (ML) and deep learning (DL) models at scale.

Everything in TensorFlow is represented as a tensor and manipulated
through computational graphs.

Tensors = multidimensional arrays.

Panchatcharam

Features

Computational Graphs

• Static graph (TF1.x)
• Eager execution (TF2.x)
• Optimized execution through tf.function()

TensorFlow automatically uses:
• CPU
• GPU
• TPU (Tensor Processing Unit)
• Device placement is automatic but can be controlled manually.

Multi-Device Execution

Panchatcharam

Keras

TF ships with Keras, a user-friendly tool for building neural networks.

model = tf.keras.Sequential([

 tf.keras.layers.Dense(64, activation='relu'),

 tf.keras.layers.Dense(1)

])

Panchatcharam

Automatic Differentiation

Through tf.GradientTape() TensorFlow automatically computes derivatives.

Panchatcharam

Distributed Training

Supports:
• Data parallelism
• Model parallelism
• Multi-GPU / Multi-TPU clusters
Frameworks:
• MirroredStrategy
• MultiWorkerMirroredStrategy

Panchatcharam

Deployment Ecosystem

• TensorFlow Lite → mobile/IoT
• TensorFlow.js → browser
• TensorFlow Serving → production models
• TFX pipelines → end-to-end ML workflow

TensorFlow Architecture

13

14

15

16

Panchatcharam

How TensorFlow Works (Step-by-Step)

Step 1: Define a computation graph

Nodes = operations
Edges = tensors flowing between operations

Step 2: Execute graph

Backends like XLA compile and optimize the graph.

Step 3: Automatic differentiation

Used for backpropagation in neural networks.

Panchatcharam

TensorFlow: Programming Model

Tensors

x = tf.constant([[1.0, 2.0], [3.0, 4.0]])

Variables

w = tf.Variable(tf.random.normal([2, 2]))

Gradient Tape

with tf.GradientTape() as tape:

 y = model(x)

grads =

tape.gradient(y,model.trainable_variables)

Panchatcharam

TensorFlow vs PyTorch

Feature TensorFlow PyTorch

Execution Graph + Eager Eager by default

Deployment Strong (TFX, Lite) Improving (TorchServe)

Mobile TensorFlow Lite PyTorch Mobile

TPU support Excellent Limited

Research flexibility Moderate Very flexible

TensorFlow is strong in production;
PyTorch is strong in research.

Panchatcharam

TensorFlow for PINNs and PDEs

TensorFlow is commonly used for:
•Physics-Informed Neural Networks (PINNs)
•Auto-differentiation of PDE residuals
•High-order derivatives
•PDE solvers via
tf.GradientTape(persistent=True)

Panchatcharam

TensorFlow for PINNs and PDEs

with tf.GradientTape(persistent=True) as t2:

with tf.GradientTape(persistent=True) as t1:

u = model(x)

du_dx = t1.gradient(u, x)

d2u_dx2 = t2.gradient(du_dx, x)

Panchatcharam

When to Use TensorFlow

• You want mobile/web deployment
• You need TPU acceleration
• You are developing production-grade models
• You want strong pipeline support (TFX)
• You work with PINNs or differential programming

Panchatcharam

When Not to Use TensorFlow

Consider PyTorch if:
• You do rapid prototyping
• You want very flexible autograd
• Your workflow is purely research (academia)

TensorFlow vs PyTorch

24

Panchatcharam

TensorFlow vs PyTorch

Panchatcharam

TensorFlow vs PyTorch

• Originally designed for production-scale deployment.
• Uses static graphs (TF1) + eager execution (TF2).
• Strong integration with Google’s ecosystem (TPU, TFX, TensorFlow Lite). TensorFlow

• Designed for research flexibility.
• Uses eager execution by default (define-by-run).
• Most popular in academia and rapid experimentation. PyTorch

TensorFlow → production-first
PyTorch → research-first

Panchatcharam

Programming: TensorFlow vs PyTorch

• Graph-based;
• optimized execution
• Functions wrapped with @tf.function
• Requires more boilerplate TensorFlow

• Pythonic, easy-to-read code
• Dynamic graph: operations executed immediately
• Very intuitive for debugging PyTorch

PyTorch is easier to write and debug.
TensorFlow is more optimized for execution.

Panchatcharam

Model: TensorFlow vs PyTorch

model = tf.keras.Sequential([

 tf.keras.layers.Dense(64, activation="relu"),

 tf.keras.layers.Dense(1)

]) TensorFlow

class Net(nn.Module):

 def __init__(self):

 super().__init__()

 self.fc1 = nn.Linear(10, 64)

 self.fc2 = nn.Linear(64, 1)

 def forward(self, x):

 return self.fc2(F.relu(self.fc1(x))) PyTorch

Keras = simpler
PyTorch = more control & transparency

Panchatcharam

AutoGrad: TensorFlow vs PyTorch

• Uses tf.GradientTape

• Supports higher-order derivatives

• Sometimes harder to compute complex derivatives in PDE problems

TensorFlow

torch.autograd is extremely flexible

Better for custom loss functions, PDEs, PINNs PyTorch

PyTorch autograd is more flexible and intuitive
TensorFlow autograd is more optimized for hardware

Panchatcharam

Community and Popularity: TensorFlow vs PyTorch

Industry:
TensorFlow widely used by Google, Airbnb, Twitter, etc.

TensorFlow

Research papers:
PyTorch dominates (>80% of deep learning papers) PyTorch

Panchatcharam

Performance: TensorFlow vs PyTorch

• Faster for static graphs
• XLA optimizations
• Better for large-scale production

TensorFlow

Slightly slower (dynamic execution)
But JIT improves performance
PyTorch 2.0 uses TorchDynamo + AOTAutograd → significant speedups

PyTorch

Performance gap is shrinking; both are comparable.

Panchatcharam

PINN: TensorFlow vs PyTorch

• For PINNs in productionTPU acceleration for large
• PDE parameter sweeps
• TF2 + Keras = clean high-level API

TensorFlow

• Easy autograd for PDE residuals
• Better control over backprop graph
• Faster prototyping for research
• JAX/PyTorch preferred in recent SciML papers

PyTorch

Research PINNs → PyTorch
Industrial PINNs / large simulations → TensorFlow or JAX

Panchatcharam

Summary

Feature TensorFlow PyTorch

Execution Static + Eager Dynamic

Ease of use Moderate Very easy

Debugging Harder Very easy

Autograd Strong but complex Best-in-class

Deployment Excellent (TFX, Lite, JS) Good (TorchServe, ONNX)

TPU support Best Moderate

Research adoption Moderate Very High

Production adoption Very High Moderate

PINN suitability Good Excellent for research

Panchatcharam

Which One Should I Choose?

Choose PyTorch if:
• You are doing research
• You work on PINNs, PDEs, SciML
• You want clean, Pythonic code
• You need fast debugging

Choose TensorFlow if:
• You want end-to-end ML pipelines
• You deploy to mobile or web
• You want TPU acceleration
• You work in production environments

TensorFlow CheatSheet

35

Panchatcharam

Install and Import

pip install tensorflow

import tensorflow as tf

from tensorflow import keras

Panchatcharam

Tensor Creations and Operations

x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.Variable(tf.random.normal([3, 3]))

Basic ops

y = x + 5

z = tf.matmul(x, tf.transpose(x))

Panchatcharam

Build Models

model = keras.Sequential([

 keras.layers.Dense(64, activation='relu'),

 keras.layers.Dense(1)

])

Panchatcharam

Functional

inputs = keras.Input(shape=(10,))

h = keras.layers.Dense(32,

activation="relu")(inputs)

outputs = keras.layers.Dense(1)(h)

model = keras.Model(inputs, outputs)

Panchatcharam

Compile and Train

model.compile(

 optimizer='adam',

 loss='mse',

 metrics=['mae']

)

model.fit(X_train, y_train, epochs=10,

batch_size=32)

Panchatcharam

Evaluate and Predict

model.evaluate(X_test, y_test)

y_pred = model.predict(X_new)

Panchatcharam

Optimizers

opt = tf.keras.optimizers.Adam(learning_rate=0.001)

opt = tf.keras.optimizers.SGD(0.01, momentum=0.9)

Panchatcharam

Activation Functions

tf.nn.relu(x)

tf.nn.sigmoid(x)

tf.nn.tanh(x)

tf.nn.softmax(x)

keras.layers.Dense(64, activation='relu')

Panchatcharam

Loss Functions

keras.losses.MeanSquaredError()

keras.losses.BinaryCrossentropy()

keras.losses.CategoricalCrossentropy()

keras.losses.MeanAbsoluteError()

Panchatcharam

Dataset and Data Pipeline

dataset = tf.data.Dataset.from_tensor_slices((X, y))

dataset = dataset.shuffle(1000).batch(32).prefetch(1)

raw_ds = tf.data.TFRecordDataset('data.tfrecord')

Panchatcharam

Automatic Differentiation

x = tf.Variable(3.0)

with tf.GradientTape() as tape:

 y = x**2 + 2*x + 1

dy_dx = tape.gradient(y, x)

grads = tape.gradient(loss,

model.trainable_variables)

Panchatcharam

Training Loop

for epoch in range(10):

 for x_batch, y_batch in dataset:

 with tf.GradientTape() as tape:

 y_pred = model(x_batch, training=True)

 loss = tf.reduce_mean(tf.square(y_batch - y_pred))

 grads = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(grads, model.trainable_variables))

Panchatcharam

Saving and Loading

model.save("model.h5")

model = keras.models.load_model("model.h5")

Panchatcharam

Useful One-Liners

tf.random.set_seed(42)

tf.keras.utils.plot_model(model, show_shapes=True)

tf.reduce_sum(x)

tf.argmax(pred, axis=1)

tf.reshape(tensor, new_shape)

tf.cast(x, tf.float32)

PyTorch CheatSheet

50

51

Panchatcharam

Install and Import

import torch

import torch.nn as nn

import torch.optim as optim

pip install torch torchvision torchaudio

Panchatcharam

Tensor Creations and Operations

x = torch.tensor([1, 2, 3])

x = torch.zeros((3, 3))

x = torch.ones((2, 2))

x = torch.randn((4, 5))

y = x + 5

z = torch.matmul(x, x.T)

x = x.reshape(9)

Panchatcharam

Build Models

class Net(nn.Module):

 def __init__(self):

 super().__init__()

 self.fc1 = nn.Linear(10, 64)

 self.fc2 = nn.Linear(64, 1)

 def forward(self, x):

 return self.fc2(torch.relu(self.fc1(x)))

model = Net()

Panchatcharam

Common Layers

nn.Linear(in_features, out_features)

nn.Conv2d(in_channels, out_channels, kernel_size)

nn.MaxPool2d(kernel_size)

nn.Dropout(p=0.5)

nn.BatchNorm1d(num_features)

Panchatcharam

Compile and Train

for epoch in range(10):

 for X, y in dataloader:

 optimizer.zero_grad()

 pred = model(X)

 loss = criterion(pred, y)

 loss.backward()

 optimizer.step()

 print(epoch, loss.item())

Panchatcharam

Evaluate and Predict

model.evaluate(X_test, y_test)

y_pred = model.predict(X_new)

Panchatcharam

Optimizers

optimizer = optim.Adam(model.parameters(), lr=0.001)

optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optim.Adam(model.parameters(), lr=0.001)

optim.RMSprop(model.parameters(), lr=0.0005)

Panchatcharam

Activation Functions

nn.ReLU()

nn.Sigmoid()

nn.Tanh()

nn.Softmax(dim=1)

Panchatcharam

Loss Functions

criterion = nn.MSELoss()

nn.CrossEntropyLoss() # multi-class

nn.BCELoss() # binary

nn.BCEWithLogitsLoss() # sigmoid + BCE

Panchatcharam

Dataset and Data Pipeline

from torch.utils.data import Dataset, DataLoader

class MyDataset(Dataset):

 def __init__(self, X, y):

 self.X = X

 self.y = y

 def __len__(self):

 return len(self.X)

 def __getitem__(self, idx):

 return self.X[idx], self.y[idx]

loader = DataLoader(MyDataset(X, y),

batch_size=32, shuffle=True)

Panchatcharam

Automatic Differentiation

x = torch.randn(3, requires_grad=True)

y = x**2 + 3*x

y.sum().backward()

print(x.grad)

Panchatcharam

Saving and Loading

torch.save(model.state_dict(), "model.pth")

model = Net()

model.load_state_dict(torch.load("model.pth"))

model.eval()

	Slide 1: TensorFlow vs PyTorch for PINN
	Slide 2: References
	Slide 3
	Slide 4
	Slide 5
	Slide 6: TensorFlow
	Slide 7: TensorFlow
	Slide 8: Features
	Slide 9: Keras
	Slide 10: Automatic Differentiation
	Slide 11: Distributed Training
	Slide 12: Deployment Ecosystem
	Slide 13: TensorFlow Architecture
	Slide 14
	Slide 15
	Slide 16
	Slide 17: How TensorFlow Works (Step-by-Step)
	Slide 18: TensorFlow: Programming Model
	Slide 19: TensorFlow vs PyTorch
	Slide 20: TensorFlow for PINNs and PDEs
	Slide 21: TensorFlow for PINNs and PDEs
	Slide 22: When to Use TensorFlow
	Slide 23: When Not to Use TensorFlow
	Slide 24: TensorFlow vs PyTorch
	Slide 25: TensorFlow vs PyTorch
	Slide 26: TensorFlow vs PyTorch
	Slide 27: Programming: TensorFlow vs PyTorch
	Slide 28: Model: TensorFlow vs PyTorch
	Slide 29: AutoGrad: TensorFlow vs PyTorch
	Slide 30: Community and Popularity: TensorFlow vs PyTorch
	Slide 31: Performance: TensorFlow vs PyTorch
	Slide 32: PINN: TensorFlow vs PyTorch
	Slide 33: Summary
	Slide 34: Which One Should I Choose?
	Slide 35: TensorFlow CheatSheet
	Slide 36: Install and Import
	Slide 37: Tensor Creations and Operations
	Slide 38: Build Models
	Slide 39: Functional
	Slide 40: Compile and Train
	Slide 41: Evaluate and Predict
	Slide 42: Optimizers
	Slide 43: Activation Functions
	Slide 44: Loss Functions
	Slide 45: Dataset and Data Pipeline
	Slide 46: Automatic Differentiation
	Slide 47: Training Loop
	Slide 48: Saving and Loading
	Slide 49: Useful One-Liners
	Slide 50: PyTorch CheatSheet
	Slide 51
	Slide 52: Install and Import
	Slide 53: Tensor Creations and Operations
	Slide 54: Build Models
	Slide 55: Common Layers
	Slide 56: Compile and Train
	Slide 57: Evaluate and Predict
	Slide 58: Optimizers
	Slide 59: Activation Functions
	Slide 60: Loss Functions
	Slide 61: Dataset and Data Pipeline
	Slide 62: Automatic Differentiation
	Slide 63: Saving and Loading

