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Draw a house on a paper

Simple Game
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90% of people have drawn a house like



How many of your houses are 
like this?
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Question:



5

Simple Song



Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.



Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.



Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.

Then the traveller in the dark
Thanks you for your tiny spark;
He could not see which way to go,
If you did not twinkle so.

When the blazing sun is gone,
When he nothing shines upon,
Then you show your little light,
Twinkle, twinkle, all the night.

In the dark blue sky you keep,
And often through my curtains peep,
For you never shut your eye
Till the sun is in the sky.

As your bright and tiny spark
Lights the traveller in the dark,
Though I know not what you are,
Twinkle, twinkle, little star.
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Who wrote this?
(from "The Star," Jane 
Taylor, 1806)



How many words were in 
red/green/blue?

10

Question:



Rapid Fire Round: Quiz
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Another Game



𝐴 = 𝑙𝑏

12

Rectangle

What does it represent?



𝑊 = 𝑚𝑔

13

Weight = mass times gravity

What does it represent?



𝐹 = 𝑚𝑎

14

Newton’s Second Law

What does it represent?



𝑦 = 𝑚𝑥

15

What does it represent?

Equation of Straight Line



𝑧 = 𝑥𝑦

16

What does it represent?



𝑧 = 𝑥𝑦

17

hyperbolic paraboloid

What does it represent?



𝐴 = 𝜋𝑟2

18

What does it represent?

Area of a Circle



𝐸 = 𝑚𝑐2

19

What does it represent?

Einstein Equation



𝑦 = 𝑎𝑥2

20

What does it represent?

Parabola



𝑧 = 𝑥𝑦2

21

What does it represent?



𝑧 = 𝑥𝑦2

22



𝑎2 + 𝑏2 = 𝑐2

23

What does it represent?

Pythagoras Theorem



𝑥2 + 𝑦2 = 𝑟2

24

What does it represent?

Equation of Circle



𝑥2 + 𝑦2 = 𝑧2

25

What does it represent?

Some 3D equation



𝑥2 + 𝑦2 = 𝑧2

26

What does it represent?
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𝑥2 +
9

4
𝑦2 + 𝑧2 − 1

3

− 𝑥2𝑧3 −
9

80
𝑦2𝑧3 = 0

What does it represent?



28

𝑥2 +
9

4
𝑦2 + 𝑧2 − 1

3

− 𝑥2𝑧3 −
9

80
𝑦2𝑧3 = 0



𝑦 = 𝑚𝑥

29

𝐹 = 𝑚𝑎

𝐴 = 𝑙𝑏

𝑊 = 𝑚𝑔

𝑧 = 𝑥𝑦



𝑦 = 𝑎𝑥2

30

𝐸 = 𝑚𝑐2

𝐴 = 𝜋𝑟2

𝑧 = 𝑥𝑦2



𝑥2 + 𝑦2 = 𝑧2

31

𝑎2 + 𝑏2 = 𝑐2

𝑥2 + 𝑦2 = 𝑟2
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The American Eskimo Dog

Labrador Retriever 

French Bulldogs

Rajapalayam Dog

German Shepherd

360 Globally 
Recognized Breeds
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rhebamny.com

73 
Standardized 

Breeds



Approximately 400,000 
Flowering Plants
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https://nayturr.com/types-of-dinosaurs/



Congratulations! You have 
done the labelling job well. 

I Mean you ARE FIT TO learn machine learning concepts

50

let us explore more details with 
Mathematics
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Panchatcharam

What is “learning” in ML?

Hard question to answer. Let us give a fuzzy answer at a enough high level 
of abstraction

1. Algorithms that solve some kind of inference problems

2. Models for datasets

Does the image have only books?
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Why and What in ML?

Statistical Inference

Statistical inference is the process of using data analysis to deduce 
properties of an underlying probability distribution. 

Inferential statistical analysis infers properties of a population, for example 
by testing hypotheses and deriving estimates.

Does the image have only books?
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Why and What in ML?

What does a ML algorithm do?

Machine learning algorithms are not algorithms for performing inference. 
Rather, they are algorithms for building inference algorithms from examples. 
An inference algorithm takes a piece of data and outputs a decision (or a 
probability distribution over the decision space).
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Modeling

Second type of problem associated to ML 

“Given a dataset how I can succinctly describe it (in a quantitative, 
mathematical manner”

Example: Regression Analysis

Geometric Models:
The general problem is that we have 
example data points

𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ ℝ𝐷

We want to find some kind of geometric 
structure that (approximately) describes 
them.

Probabilistic Models:

The basic task here is to find a probability 
distribution that describes the dataset 
{𝑥𝑛}
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ML Examples

Classification: 
From data to 

discrete classes

Spam Filtering

Object 
Detection

Weather 
Prediction 

(rain, snow)

Regression: 
predict a numeric 

value

Stock Market

Weather 
Prediction 

(Temperature)

Ranking: 
comparing items

Web Search

Find Similar 
images

Collaborative 
Filtering: 

Recommendation
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ML Examples

Clustering: 
discovers structure 
in data

• Cluster Point or 
images

• Cluster web search

Embedding: 
Visualize data

• Images words

Structured 
Prediction: from 
data to discrete 
classes

• Speech Recognition

• NLP
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SL

Supervised Learning

▪ Builds a Mathematical Model

▪ Contains input and output data: Training Data

▪ Relations : Supervisor Signals, F(x)

▪ Each training example: Array or Vector

▪ Training Data: Matrix

▪ Iterative optimization

Source: Educative.io
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UL

Unsupervised Learning

▪ Takes only input

▪ Finds the structure in the data

▪ Groups/Clustering data

▪ Classifies 

▪ React based on the presence of such 
commonalities in each new piece of 
data

▪ Statistical analysis (density 
estimation function)

▪Weighted to finding probabilities of 
outcomes (conditional probability)

Source: tecnative.io
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RL

Reinforcement Learning

▪ Give rewards for every positive result and make 
based on an algorithm

▪ Agent-Based Learning: Learns by interacting with 
the environment

▪ Trial-and-Error: Receives rewards or penalties for 
actions

▪ Objective: Maximize cumulative rewards over time

▪ Decision Process: Uses Markov Decision Process 
(MDP) framework

▪ Exploration vs. Exploitation: Balances between 
trying new actions and using learned knowledge

▪ Optimization: Iterative improvement of policies 
(e.g., Q-learning, Policy Gradient methods)

Source:https://techvidvan.com/
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Three Different Types of ML

Supervised 
Learning

Labeled Data

Direct Feedback

Predict 
Outcome/Future

Unsupervised 
Learning

No Labels

No Feedback

Find Hidden 
Structures in 

Data

Reinforcement 
Learning

Decision Process

Reward System

Learn from 
Series of Actions
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Mathematics for Machine Learning

64

Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics, 

IIT Tirupati
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If Data is the fuel of AI, Linear 
Algebra is its Engine and 

Vector Calculus is the 
Navigation/Control System

67



68



Machine Learning in 
Mathematical Way

69
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Supervised Learning

Assumption: Given a data set 𝑥𝑖 , 𝑦𝑖 , ∃ a relation f: X → Y

Supervised Learning:
➢ Given: Training Set 𝑥𝑖 , 𝑦𝑖 |𝑖 = 1,2, ⋯ , 𝑁

➢ Find: መ𝑓: X → Y a good approximation to 𝑓
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Regression

➢ Girls vs Boys
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Simple Example

𝑥 𝟎 𝝅

𝟐

𝑓(𝑥) 0 1

Consider 10 points generated from a sine function with noise
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Simple Example

Which is Best?
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Simple Example

Which is Best?
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SSE or LSE

How do you measure it? 

Given several models with similar explanatory ability, the simplest is most likely to 
be the best choice

Given a dataset {(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,2, ⋯ , 𝑚} and the model 𝑃𝑛, define the LS Error as  

𝐸𝑛 = ෍

𝑖=1

𝑚

𝑦𝑖 − 𝑃𝑛 𝑥𝑖
2

It is also called the mean square error if we divide it by the sample size.

Least Square Error or SSE
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MS or LS Error

Least Square Error
The best choice is 𝑃3
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Occam’s Razor Principle

Law of Parsimony

One should not increase, beyond what is necessary, the number of entities 
required to explain anything

• When many solutions are available for a given problem, we should select the simplest one
• What do you mean by simple?
❑Use prior knowledge of the problem to solve to define what is a simple solution.



Binary Classifiers
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Binary Classifier

Binary Classifier

A function which can decide whether given input vector 
belongs to some specific class or not.

• It refers to those classification tasks that have two class labels
• A type of linear classifier
• A classification algorithm that makes its prediction based on a 

linear predictor function combining a set of weights with the 
feature vector

• Linear classifiers are artificial neurons
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Human Brain: Mystique and Mystery
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Human Brain: Mystique and Mystery
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Linear Classifiers

Linear Classifier

As artificial neurons, Linear classifiers have the following characteristics

Inputs

Feature Values 𝑥 

Weight

Each Feature has 
a weight

𝑤

Activation 
Function

Weighted sum

𝜙𝑤 𝑥 = ෍

𝑗

𝑤𝑗𝑥𝑗 = 𝑤𝑇𝑥

Decision/Output

Class 1, if 
𝜙𝑤 𝑥 > 0

Class 2, if 
𝜙𝑤 𝑥 < 0



Perceptron
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Perceptron

Invented by Frank Rosenblatt (1957), Built on work of  Hebbs (1949), Improved by 
Widrown-Hoff (1960), 
Learning Methods for two-layer neural networks (1970)

Inputs

𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑛
𝑇

Weight 
Vector

𝑤 = 𝑤1, 𝑤, ⋯ , 𝑤𝑛
𝑇

Net Input

𝑧 = ෍

𝑗

𝑤𝑗𝑥𝑗 = 𝑤𝑇𝑥

Activation 
Function

𝜙 𝑧 = 1

If 𝑧 ≥ 𝜃

𝜙 𝑧 = −1

otherwise

𝜃 is a threshold

Perceptron
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Perceptron

Inputs

𝑥 = 1, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛
𝑇

Weight 
Vector

𝑤 = 𝑤0, 𝑤1, 𝑤, ⋯ , 𝑤𝑛
𝑇

Net Input

𝑧 = 𝑤0 + ෍

𝑗

𝑤𝑗𝑥𝑗 = 𝑤𝑇𝑥

Activation 
Function

𝜙 𝑧 = 1
If 𝑧 ≥ 0

𝜙 𝑧 = −1

otherwise𝑤0 = −𝜃, called bias in ML

A perceptron is a linear classifier that decides between two classes by drawing a straight 
line (or hyperplane) to separate them. Perceptron
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Mathematical view of Perceptron

𝑧 = 𝑤0 + ෍

𝑗

𝑤𝑗𝑥𝑗 = 𝑤𝑇𝑥

The equation 𝑧 = 𝑤𝑇𝑥 represents a hyperplane in ℝ𝑛, whereas 𝑤0 decides the intercept

Let us take 𝑛 = 1 and see, 𝑧 = 𝑤0 + 𝑤1𝑥1 ⇒ 𝑦 = 𝑎𝑥 + 𝑏

What is unknown here? 1. Initialize weights to 0 or small random numbers
2. For each training sample 𝑥𝑖

a) Find the output value 𝑦𝑖 = 𝜙(𝑧𝑖)
b) Update the weights
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Update Weight Vector

𝑤 = 𝑤 + Δ𝑤, Δ𝑤 = 𝜂 𝑦𝑖 − ത𝑦𝑖 𝑥𝑖

𝜂 is the learning rate, 0 < 𝜂 < 1, 
𝑦𝑖  is the true class label of the 𝑖𝑡ℎ training sample, 
ത𝑦𝑖  is the predicted class label of the 𝑖𝑡ℎ training sample

What will be Δ𝑤?
1. If prediction is correct
2. What will be it if the prediction is wrong
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Separable Dataset

A dataset 𝑥𝑖 , 𝑦𝑖  is linearly separable if there exists ෝ𝑤 and 𝛾 such that 

𝑦𝑖 ෝ𝑤𝑇𝑥𝑖 ≥ 𝛾 > 0, ∀𝑖
where 𝛾 is called the margin

Let 𝑋 and 𝑌 be two sets of points in an 
ℝ𝑛. Then 𝑋 and 𝑌 are linearly separable 
if there exists 𝑤 ∈ ℝ𝑛 and 𝑘 ∈ ℝ such 
that every point 𝑥 ∈ 𝑋 satisfies  
𝑤𝑇𝑥 > 𝑘 and every point 𝑦 ∈ 𝑌 satisfied

𝑤𝑇𝑦 < 𝑘
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SVM

For linearly separable training dataset
1. Perceptron always converge
2. Separability: Some weights get the 

training set perfectly correct

Support Vector Machine (SVM) chooses the linear separator with 
the largest margin.



Panchatcharam

Adaline Algorithm

1. Weights are updates based on 𝜙(𝑧)
2. Suppose 𝜙 𝑧 = 𝑧 (Identity Function)
3. This algorithm is interested to define a cost function and minimize it
4. Continuous cost function allow the ML optimization problem to Calculus Problem
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Adaline Learning

Given a dataset 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1,2, ⋯ , 𝑁

Learn the weights 𝑤𝑖  and bias 𝑏 = 𝑤0

Activation Function
𝜙 𝑧 = 𝑧

Cost Function (SSE)

𝒥 𝑤, 𝑏 =
1

2
෍

𝑖

𝑦𝑖 − 𝜙 𝑧𝑖
2

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏
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Gradient Descent Method

Dominant algorithm for the minimization of the cost function 

Compute −∇ℐ for the search direction (update direction)
𝑤 = 𝑤 + Δ𝑤 = 𝑤 − 𝜂∇𝑤ℐ(𝑤, 𝑏)

𝑏 = 𝑏 + Δ𝑏 = 𝑏 − 𝜂∇𝑏ℐ(𝑤, 𝑏)

Where 𝜂 > 0 is the step length (learning rate)

Δ𝑤 = −𝜂∇𝑤ℐ 𝑤, 𝑏 = 𝜂 ෍

𝑖

𝑦𝑖 − 𝜙 𝑧𝑖 𝑥𝑖

Δ𝑤 = −𝜂∇𝑏ℐ 𝑤, 𝑏 = 𝜂 ෍

𝑖

𝑦𝑖 − 𝜙 𝑧𝑖
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Activation Function

𝜙 𝑧 = ቊ
1 𝑖𝑓 𝑧 ≥ 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜙 𝑧 =
1

1 + 𝑒−𝑧
=

𝑒𝑧

1 + 𝑒𝑧

This helps to identify the probability of individual classes



Unsupervised Learning
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Unsupervised Learning

In unsupervised learning, we deal with unlabeled data or data of 
unknown structure. Using Unsupervised learning, we can explore 
the structure of our data to extract meaningful information without 
the guidance of a known outcome variable or reward function
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Source: Google Search, Unmanned Island
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𝑥2 +
9

4
𝑦2 + 𝑧2 − 1

3

− 𝑥2𝑧3 −
9

80
𝑦2𝑧3 = 0
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𝑥2 +
9

4
𝑦2 + 𝑧2 − 1

3

− 𝑥2𝑧3 −
9

80
𝑦2𝑧3 = 0
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Unsupervised Learning

Assumption: Given an unlabeled dataset 𝑥𝑖 , 

Unsupervised Learning:
➢ Given: Training Set 𝑥𝑖|𝑖 = 1,2, ⋯ , 𝑁

➢ Find a similar cluster or density estimation or dimensionality reduction
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Unsupervised Learning: Clustering

Assumption: Given an unlabeled dataset 𝑥𝑖 , 

min
𝒞

෍

𝑖

෍

𝑐∈𝒞

𝕀 𝑖, 𝑐 𝑥𝑖 − 𝜇𝑐
2

𝒞: set of clusters

𝕀(𝑖, 𝑐): indicator function

𝕀 𝑖, 𝑐 = ቊ
1 𝑥𝑖 ∈ 𝑐
0 𝑥𝑖 ∉ 𝑐

𝜇𝑐: Centroid of the cluster
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Unsupervised Learning: Density Estimation

Assumption: Given a unlabeled dataset 𝑥𝑖 , estimate the 
probability distribution (MLE)

Ƹ𝑝 𝑥 = arg max
𝑝(𝑥)

ෑ

𝑖

𝑝(𝑥𝑖)

𝑝(𝑥) ∶ Probability density functions of the data

Find the distribution that maximizes the MLE.
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Unsupervised Learning: PCA

Assumption: Given an unlabeled dataset 𝑥𝑖 ∈ ℝ𝑑 , reduce to a low-
dimensional space 𝑧𝑖 ∈ ℝ𝑘. Principal Component Analysis (PCA) 
can be formulated as finding the projection 

𝑧𝑖 = 𝑊𝑇𝑥𝑖

𝑊 ∈ ℝ𝑑×𝑘 is a projection matrix that maximizes the variance in the 
reduced space

max
𝑊

෍

𝑖

𝑊𝑇𝑥𝑖
2



Reinforcement Learning
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Reinforcement Learning

It is the science of decision-making combining ML and Optimal 
Control.

➢ Learning the optimal behavior in a dynamic environment - 
maximum reward.

➢Optimal behavior is learned through interactions with the 
environment and observations of how it responds

➢No need for labeled input/output pairs

➢ In the absence of a supervisor, the learner must 
independently discover the sequence of actions that 
maximize the reward. 

➢ This discovery process is similar to a trial-and-error search.
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Reinforcement Learning

Agent: The learner  or decision maker

Environment: The external system with which the agent interacts

State (𝒔𝒕):The representation of the current system in the environment 
at time step 𝒕

Action (𝒂𝒕):The action taken by the agent at time step 𝒕

Reward (𝒓𝒕):The scalar feedback received after taking action (𝒂𝒕) at 
time step 𝒕 in state 𝒔𝒕

Policy 𝜋: 𝒮 → 𝒜, where 𝓢 set of all states, 𝓐 set of all actions

Value Function (𝑽𝝅):Estimates how good a particular state

Action-Value Function (𝑸𝝅):Estimates the expected cumulative reward
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Reinforcement Learning

Markov Decision Process 
ℳ = ⟨𝒮, 𝒜, 𝑃, 𝑟, 𝛾⟩

𝒮: Possible States

𝒜: Possible actions

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡): probability of moving from state 𝑠𝑡 to 𝑠𝑡+1 when 
action 𝑎𝑡 is taken

𝑟𝑡: reward function, immediate reward after taking action 𝑎𝑡

𝛾 ∈ [0,1]: discount factor, helps to identify future rewards relative 
to immediate rewards
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Bellman Optimality Equation

Value Function and Bellman Equation
𝑉𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼𝜋 𝑟𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1

𝑉∗ 𝑠𝑡 = max
𝜋

𝑉𝜋(𝑠𝑡)  𝑎𝑛𝑑 𝑄∗ 𝑠𝑡, 𝑎𝑡 = max
𝜋

𝑄𝜋(𝑠𝑡, 𝑎𝑡)

Optimal Action-Value Function

𝑄∗ 𝑠𝑡 , 𝑎𝑡 = 𝔼𝑠𝑡+1
𝑟𝑡 + 𝛾 max

𝑎𝑡+1 

𝑄∗ 𝑠𝑡, 𝑎𝑡
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Self-supervised Learning

Self-supervised learning is a type of machine learning where a model 
learns from unlabeled data by creating its own supervision signal. In 
other words, the model generates pseudo-labels or uses part of the 
data to predict another part, which allows it to learn useful 
representations of the data without requiring human-provided labels.
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Self-supervised Learning

Assumption: Given a unlabeled dataset 𝑥𝑖 , 

Self-supervised Learning:
➢ Given: Training Set 𝑥𝑖|𝑖 = 1,2, ⋯ , 𝑁

➢ Define pretext task to generate a supervisory signal from the data

➢ Corrupted or masked input 𝑥𝑖
𝑚

➢ Target 𝑦𝑖 = 𝑥𝑖
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Self-supervised Learning

Define 𝒇(𝒙) model (neural network) that learns the 
transformation of the input data 𝑥x into a useful representation.

Learned embedding of the input 𝑥𝑖

ℒ 𝜃 = ෍

𝑖

ℒ𝑡𝑎𝑠𝑘 𝑓 𝑥𝑖
𝑚 , 𝑦𝑖
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Physics Informed Neural Network
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Supervised Learning

▪ Images → inputs

▪ Labels (“dog”, “rose”, “aeroplane”) → outputs

▪Neural network → learns to map inputs to outputs by minimizing 
an error (difference between predicted and true labels).
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Supervised Learning

▪What if I don’t have many labels, but I know the rules of the world 
— like Newton’s laws, or a heat equation?
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PINN

▪In supervised ML:
❑You train with data points and labels.

▪In PINNs:
❑You train with data points (locations, times)
❑Instead of labels, you use physical laws (PDEs) as a teacher.
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PINN

▪In normal ML, the network learns from examples.

▪In PINNs, the network learns from equations.
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Analogy

Concept ML (what they already know) PINN (new link)

Input Image pixels Space-time coordinates (x, y, t)

Output Label (dog/flower)
Field value (e.g., temperature, velocity, 
pressure)

Learning Source Labeled data Physics law (e.g., Navier–Stokes, diffusion)

Loss Function
Cross-entropy / MSE with 
labels

PDE residuals + boundary/initial condition 
losses

Goal Classify correctly Satisfy physics and match sparse data
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Nutshell

Stage Theme Concept

Stage 1 Learning from Labels Supervised ML

Stage 2 Learning from Similarity Unsupervised ML

Stage 3 Learning from Rules PINN

from observing data → discovering structure → obeying laws of nature.
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Nutshell

“When you were children, you learned to identify dogs by 
seeing many of them — that was data-driven learning.
Later, you learned about bones, muscles, and motion — 
that’s physics.
PINNs are like scientists — they don’t just memorize; they 
reason with equations.”



PINN Introduction
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PDEs

𝒖𝒕 = 𝒄𝟐𝒖𝒙𝒙, 𝒙 ∈ 𝟎, 𝟏 , 𝒕 > 𝟎
• 𝑢(𝑥, 𝑡): temperature
• 𝑐2: thermal diffusivity
• BCs: 𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0
• ICs: 𝑢 𝑥, 0 = 𝑠𝑖𝑛 (𝜋𝑥) 

Traditionally, we solve this with finite differences or FEM.
But what if a neural network could learn this solution? 
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Introduction

Ordinary Neural Network Physics Informed Neural Network

Learns from data (x → y) Learns from equations (e.g., PDEs)

Uses labeled examples Uses physical laws

Needs lots of data Can work with few data points

Input: Image → Output: Label Input: (x, t) → Output: u(x, t)

Loss = (prediction - label)² Loss = (PDE residual)² + BC/IC loss

Learns from data Learns from Equations
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Supervised Learning

Assumption: Given a data set 𝑥𝑖 , 𝑦𝑖 , ∃ a relation f: X → Y

Supervised Learning:
➢ Given: Training Set 𝑥𝑖 , 𝑦𝑖 |𝑖 = 1,2, ⋯ , 𝑁

➢ Find: መ𝑓: X → Y a good approximation to 𝑓

Given a dataset {(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,2, ⋯ , 𝑚} and the model 𝑃𝑛, define the LS Error as  

𝐸𝑛 =
1

𝑚
෍

𝑖=1

𝑚

𝑦𝑖 − 𝑃𝑛 𝑥𝑖
2

It is also called the mean square error (MSE)

Mean Square Error or SSE
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Neural Network

ො𝑢 𝑥, 𝑡, 𝜃 : Small fully-connected NN
Use Automatic Differentiation (AD)

𝑓𝜃 𝑥, 𝑡 =
𝜕 ො𝑢

𝜕𝑡
− 𝑐2

𝜕2 ො𝑢

𝜕𝑥2

Physics Loss:
𝐿𝑃𝐷𝐸 = 𝑀𝑆𝐸(𝑓𝜃 𝑥, 𝑡 , 0)

BC Loss:
𝐿𝐵𝐶 = 𝑀𝑆𝐸 ො𝑢 0, 𝑡 , 0 + 𝑀𝑆𝐸 ො𝑢 1, 𝑡 , 0

Initial Loss:
𝐿𝐼𝐶 = 𝑀𝑆𝐸 ො𝑢 𝑥, 0 , sin(𝜋𝑥)

Total Loss:
𝑳 = 𝑳𝑷𝑫𝑬 + 𝑳𝑩𝑪 + 𝑳𝑰𝑪
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How to Learn?

ො𝑢 𝑥, 𝑡, 𝜃 : Small fully-connected NN
Use Automatic Differentiation (AD)

𝑓𝜃 𝑥, 𝑡 =
𝜕 ො𝑢

𝜕𝑡
− 𝑐2

𝜕2 ො𝑢

𝜕𝑥2

Physics Loss:
𝐿𝑃𝐷𝐸 = 𝑀𝑆𝐸(𝑓𝜃 𝑥, 𝑡 , 0)

BC Loss:
𝐿𝐵𝐶 = 𝑀𝑆𝐸 ො𝑢 0, 𝑡 , 0 + 𝑀𝑆𝐸 ො𝑢 1, 𝑡 , 0

Initial Loss:
𝐿𝐼𝐶 = 𝑀𝑆𝐸 ො𝑢 𝑥, 0 , sin(𝜋𝑥)

Total Loss:
𝑳 = 𝑳𝑷𝑫𝑬 + 𝑳𝑩𝑪 + 𝑳𝑰𝑪

Level New Concept Example

Beginner PDE residual only Heat equation

Intermediate Add ICs/BCs Wave equation

Advanced Add measured data Wave tank, Navier–Stokes

Research Domain decomposition, adaptive sampling Real 2D/3D simulations
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Libraries

Library Use

PyTorch / TensorFlow Custom PINN implementations

DeepXDE Simplifies PINN coding for beginners

SciANN TensorFlow-based PINN library

Modulus (NVIDIA) For high-performance PDE PINNs (later stage)
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Lecture Notes

1.SciML — Physics-Informed Neural Networks
Part of Scientific Machine Learning course lectures. KKS32 Courses
2.ETH Zurich — Deep Learning in Scientific Computing (Spring Semester 2023)
Lecture slides / applications of PINNs by Siddhartha Mishra, Ben Moseley. ETH Zürich
3.Oxford University — Physics Informed Neural Networks Course
Dept. of Computer Science, Oxford has a course page for PINNs. Department of 
Computer Science
4.Nature Article: Physics-Informed Machine Learning
5.Elsevier Article: Physics-informed machine learning: A comprehensive review on 
applications in anomaly detection and condition monitoring
6.Springer Article: Physics-informed neural networks for PDE problems: a 
comprehensive review

https://kks32-courses.github.io/sciml/lectures/02-pinn/02-pinn.html?
https://ethz.ch/content/dam/ethz/special-interest/math/applied-mathematics/camlab-dam/documents/DLSC2023/DLSC23_05_PINN_applications.pdf
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/pinn/
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/pinn/
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7
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Lecture Notes

1. IITU — “DL in Applied Mathematics” (Lecture on PINN)
Includes definitions, loss function discussions, advantages/disadvantages. IITU

2. GitHub Tutorials
1. FilippoMB / Physics-Informed-Neural-Networks-tutorial (PyTorch notebook) 

GitHub
2. AlirezaAfzalAghaei / PINN-tutorial (minimal PINN implementations in PyTorch) 

GitHub
3. nguyenkhoa0209 / pinns_tutorial repository GitHub

3. DeepChem Tutorial
Introductory tutorial on PINNs using JAX / other tools on DeepChem site. 
DeepChem

4. MATHEMATICAL LAB / PINA Tutorial
Tutorial on multiscale PDEs using Fourier-Feature Networks with PINNs MathLab

https://iitu.edu.kz/documents/3421/Lecture_14_TQAJmps.pdf
https://github.com/FilippoMB/Physics-Informed-Neural-Networks-tutorial
https://github.com/alirezaafzalaghaei/PINN-tutorial
https://github.com/nguyenkhoa0209/pinns_tutorial
https://deepchem.io/tutorials/physics-informed-neural-networks
https://mathlab.github.io/PINA/tutorial13/tutorial.html
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Lecture Notes

1. Physics-informed neural networks: A deep learning framework for solving 
forward and inverse problems involving nonlinear partial differential equations 
https://www.sciencedirect.com/science/article/pii/S0021999118307125 
https://github.com/maziarraissi/PINNs

2. SciML: Open Source Software for Scientific Machine Learning https://sciml.ai/

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://github.com/maziarraissi/PINNs


A Few Fundamentals
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Basics

This Part of the lecture is based on the paper 
1. A Survey on Universal Approximation Theorems, Midhun T. Augustine, 2024
2. An elementary proof of a universal approximation theorem, Chris Monico, 2024
3. A visual proof that neural nets can compute any function
4. Approximation by superpositions of a sigmoidal function
5. Universality of deep convolutional neural networks
6. Recurrent Neural Networks Are Universal Approximators

https://arxiv.org/html/2407.12895v1
https://arxiv.org/html/2407.12895v1
https://arxiv.org/pdf/2406.10002
https://arxiv.org/pdf/2406.10002
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
https://link.springer.com/chapter/10.1007/11840817_66
https://link.springer.com/chapter/10.1007/11840817_66
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://link.springer.com/chapter/10.1007/11840817_66
https://link.springer.com/chapter/10.1007/11840817_66
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NN or ANN

NN or ANN

A neural network (NN) or artificial neural network (ANN) is a network of artificial 
neurons arranged in layers.

The artificial neurons (also called perceptron) are inspired 
by biological neurons in biological neural networks (BNNs)

Perceptron



Panchatcharam

UATs

UATs

UATs are theorems associated with the approximation capabilities of NNs.
i.e., the ability of an NN to approximate arbitrary functions.

In general, UATs imply that NNs with appropriate parameters 
can approximate any continuous functions, 
i.e. are generalized models that can represent complicated 
relationships in the data

UATs
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Few Notations

• Let 𝒙 ∈ ℝ𝒏. The 𝑝 −norm or 𝑙𝑝 −norm of a vector 𝒙 is

𝒙
𝒑

= 𝒙𝟏
𝒑 + 𝒙𝟐

𝒑 + ⋯ 𝒙𝒏
𝒑 𝟏/𝒑

• The 𝐿𝑝 norm of a function 𝑓: 𝑋 → 𝑌 is defined as 

𝑓
𝑝

= න
𝑋

𝑓 𝑥
𝑝

𝑝

1
𝑝

 

• A subset 𝑋 of ℝ𝑛 is said to be compact if it is closed and bounded
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Neural Network

• NN is a network of neurons arranged in layers
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Neural Network

• NN is a network of neurons arranged in layers
• The layers are connected sequentially, 
i.e., the output of each layer goes to the next layer as input. 
• NNs can represented using composite functions of the form

𝒚 = 𝒇𝑵𝑵 𝒙 = 𝒇𝑳+𝟏 𝒇𝑳 … 𝒇𝟏 𝒇𝟎 𝒙

where 𝒙 ∈ ℝ𝑛, 𝑦 ∈ ℝ𝑚, fNN: ℝ𝑛 → ℝ𝑚 is the NN function and 𝑓0, 𝑓1, ⋯ 𝑓𝐿+1 are 
layers of the NN.
• 𝑓0 is the input layer
• 𝑓𝐿+1 is the output layer
• 𝑓1, 𝑓2, ⋯ 𝑓𝐿 are hidden layers
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Questions

• How many layers in total?
• If the number of hidden layers is L, then the total number of layers is ______
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NN-Mathematically

• Input of the 𝑖𝑡ℎ layer be 𝒙𝒊

• Output of the 𝑖𝑡ℎ layer be 𝒚𝒊

𝒚𝒊 = 𝒇𝒊 𝒙𝒊 = 𝝈𝒊(𝑨𝒊𝒙𝒊 + 𝒃𝒊)
Where

𝜎𝑖 = 𝜎𝑖1
, 𝜎𝑖2

, ⋯ 𝜎𝑖𝑚𝑖

′

They are elementwise activation functions for the 𝑖𝑡ℎ layer, 𝑚𝑖 is the number of 
neurons in 𝑖𝑡ℎ layer. 
• 𝐴𝑖 ∈ ℝ𝑚𝑖×𝑚𝑖−1  is the weight matrix
• 𝑏𝑖 ∈ ℝ𝑚𝑖  is the bias vector
• 𝑥𝑖 ∈ ℝ𝑚𝑖−1

• 𝑦𝑖 ∈ ℝ𝑚𝑖
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List of Activation Function

ReLU or Rectified Linear Unit

𝜎 𝑥 = max 0, 𝑥 = ቊ
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

 

𝜎 𝑥 = ቊ
0 𝑖𝑓 𝑥 ≤ 0
1 𝑖𝑓 𝑥 > 0

 

Step Function

𝜎 𝑥 =
1

1 + 𝑒−𝑥
 

Logistic Function

𝜎 𝑥 = tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Tanh Function
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List of Activation Function
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A few Terminologies

Neuron

Data processing units in NNs
𝑦𝑖𝑗

= 𝜎𝑖𝑗
(𝑨𝒊𝒋

𝒙𝒊 + 𝑏𝑖𝑗
)

𝑦𝑖𝑗
 is the output of the 𝑗𝑡ℎ neuron in the 𝑖𝑡ℎ layer.

𝐴𝑖𝑗
= 𝑎1 𝑎2  … 𝑎𝑚𝑖−1

 is the 𝑗𝑡ℎ row of the weight matrix 𝐴𝑖 and 𝑏𝑖𝑗 is the 𝑗𝑡ℎ 

element of the bias vector 𝑏𝑖
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A few Terminologies

Layer

• A collection of neurons that takes the same inputs. 
• In general, layers are vector-valued functions. 
• Layers can grouped into three categories: input, output, and hidden layers.
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Three Different Layers

Input

each neuron 
has only one 

input

it simply passes 
the input

𝝈𝟎 𝑨𝟎𝒙 + 𝒃𝟎 = 𝒙

Hidden

each neuron 
can have more 
than one input

gives a scalar 
output

𝜎 : nonlinear.

Output

each neuron 
can have more 
than one input

gives a scalar 
output

𝜎: linear for regression

𝜎:nonlinear for classifciaton
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Width, Depth, Shallow, Deep

Width

maximum 
number of 

neurons in a layer

𝑊 = max
𝑖

𝑚𝑖

Depth

number of hidden 
layers plus output 

layer

𝐷 = 𝐿 + 1

Shallow NN

NN with only one 
hidden layer

𝐷 = 2

Deep NN

NN with more 
than one hidden 

layer

𝐷 > 2
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Example

• One Input, One linear Output, One Hidden Layer with three Neuron
𝑦 = 𝐴2𝜎1 𝐴1𝑥 + 𝑏1 + 𝑏2

𝐴2 = 0.1 0.3 0.7 , 𝐴1 =
3

−1
2

, 𝑏1 =
−1
4
0

, 𝑏2 = 2, 𝜎1 = tanh 𝑥

What is your 𝑦? Derive it

𝑦 = 0.1 tanh 3𝑥 − 1 + 0.3 tanh 4 − 𝑥 + 0.7 tanh 2𝑥 + 10 + 2

Change A2 as follows
 𝐴2= −0.4 0.2 − 0.3 ,

 𝐴2= −0.3 0.5 0.1 ,
 𝐴2= 0.2 − 0.7 0.6 ,
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Example
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Question

• These examples illustrate that we can represent complicated nonlinear 
relationships using NNs

• The main use of NNs is modeling relationships in the data, the question of the 
approximation capabilities of NNs gained interest naturally

𝐂𝐚𝐧 𝐰𝐞 𝐚𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐚𝐧𝐲 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐨𝐮𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐮𝐬𝐢𝐧𝐠 𝐍𝐍𝐬?



Universal Approximation 
Theorems (UATs)

152
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Question

• Arbitrary width case
• Arbitrary depth case
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Taylor’s Theorem (1715)

Consider the continuous function 𝑓: ℝ → ℝ. Let 𝑎 ∈ ℝ where 𝑓 is 𝑁-times 
differentiable. Then 𝑓 can be represented as a sum of polynomials 

𝑓 𝑥 = 𝑓 𝑎 + ෍

𝑛=1

𝑁
𝑓 𝑛 𝑎 𝑥 − 𝑎 𝑛

𝑛!
+ 𝑅𝑁(𝑥)

Taylor’s theorem can be considered as a mathematical 
foundation for linearization-based methods
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Fourier (1807)

Consider the continuous and periodic function with period 𝑇. Then 𝑓 can be 
represented as a sum of sinusoids

𝑓 𝑥 = 𝐴0 + ෍

𝑛=1

𝑁

𝐴𝑛 cos
2𝜋𝑛𝑥

𝑇
+ 𝜙𝑛

Here A_n is the amplitude and 𝜙𝑛 is the phase of the 𝑛𝑡ℎ harmonic component.

It can be extended to non-periodic functions as well →Fourier Transform
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Weierstrass (1885)

Any continuous real-valued function 𝑓: 𝑎, 𝑏 → ℝ can be approximated with a 
polynomial of 

𝑃𝑁 𝑥 = ෍

𝑛=0

𝑁

𝑐𝑛𝑥𝑛

such that
𝑓 𝑥 − 𝑃𝑁 𝑥 < 𝜖

for any arbitrary 𝜖 > 0

• Weierstrass Approximation theorem implies that any continuous function on a 
closed interval can be uniformly approximated by a polynomial function with 
arbitrary accuracy.

• The Weierstrass approximation theorem can be considered as a mathematical 
foundation for polynomial regression and interpolation methods.
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Question (Hilbert)

Hilbert’s 13th Problem

Can any continuous function of more than two variables be expressed as 
a superposition of finitely many continuous functions of two variables?

This problem was solved by Arnold and Kolmogorov in 1957 
which resulted in the Kolmogorov-Arnold representation 
theorem
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Kolmogorov-Arnold Representation Theorem

Any continuous real-valued function 𝑓: 0,1 𝑛 → ℝ can be approximated with a 
polynomial of 

𝑓 𝒙 = 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 = ෍

𝑗=1

2𝑛+1

𝛽𝑗 ෍

𝑖=0

𝑛

𝛼𝑖𝑗 𝑥𝑖

Where 𝛼𝑖𝑗: 0,1 → ℝ and 𝛽𝑗: ℝ → ℝ
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Summary

• Taylor → Approximation of differentiable function (𝑁 times) by a polynomial
• Fourier → Approximation of continuous function and periodic by sinusoids
• Weierstrass → Approximation of continuous function by polynomials
• Kolmogorov-Arnold → More than two variables as a superposition of finitely 

many continuous functions of two variables.
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Universal Approximation Theorem – Width

• After the introduction of Neural Networks, approximation capabilities 
of sigmoid functions gained popularity, since in the initial versions of 
NNs sigmoid functions were used as activation functions

The depth or number of layers in the NN is 
considered to be bounded.
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Examples

𝑦 = 𝑅𝑒𝐿𝑈 2𝑥 − 4
𝑦 = 𝑅𝑒𝐿𝑈(−𝑥 − 3)

One Hidden Layer Neuron

𝑦 = 𝑅𝑒𝐿𝑈 2𝑥 − 4 + 𝑅𝑒𝐿𝑈(−𝑥 − 3)

Two Neurons

𝑦 = 0.3𝑅𝑒𝐿𝑈 2𝑥 − 4 + 0.7𝑅𝑒𝐿𝑈 −𝑥 − 3 − 0.5𝑅𝑒𝐿𝑈(4𝑥 − 20)

Three Neurons

ReLU or Rectified Linear Unit

𝜎 𝑥 = max 0, 𝑥 = ቊ
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0
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Examples

𝑦 = 𝑅𝑒𝐿𝑈 2𝑥 − 4
𝑦 = 𝑅𝑒𝐿𝑈(−𝑥 − 3)

One Hidden Layer Neuron

𝑦 = 𝑅𝑒𝐿𝑈 2𝑥 − 4 + 𝑅𝑒𝐿𝑈(−𝑥 − 3)

Two Neurons

𝑦 = 0.3𝑅𝑒𝐿𝑈 2𝑥 − 4 + 0.7𝑅𝑒𝐿𝑈 −𝑥 − 3 − 0.5𝑅𝑒𝐿𝑈(4𝑥 − 20)

Three Neurons
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Questions

How many folds in two neurons?
How many folds in three neurons?

Number of folds in the curve increases with the number of neurons.



Panchatcharam

Pascanu et al (2013)

Consider the graph 𝒇𝑵𝑵(𝒙) which has folds along 𝐻 
hyperplanes defined linear functions 𝐴1𝑗

𝑥 + 𝑏1𝑗
=

0, 𝑥 ∈ ℝ𝑛, 𝑗 = 1,2, … , 𝐻. Then the number of linear 
pieces of 𝑓𝑁𝑁 is

𝒏𝒍 = ෍

𝒏=𝟎

𝑵

𝑯
𝒏
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UATs

• 1980s: UATs attempted to extend Kolmogorov-
Arnold Representations

• Continuous functions can be arbitrarily 
approximated using NNs with two hidden layers and 
monotonic activation function [Cun, Farber]

• Arbitrary functions can be approximated by one 
hidden layer network with infinite number of 
neurons [Miyake]
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UATs

• One hidden layer with a monotone cosine activation 
function can give Fourier series approximation to a 
given function as its output
❖ Limited to only square-integrable functions on a 

compact set

The UATs are mostly t space can be approximated by fNN .stated 
using the density of the functions 𝑓𝑁𝑁(𝑋) generated by NNs within a 
given function space of interest
i.e. if 𝑓𝑁𝑁(𝑋) is dense in a given space, then, any function in that 
space is approximated by 𝑓𝑁𝑁
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Funahashi, Hornick et al., and Cybenko, 1989

Let 𝑋 be any compact subset of ℝ𝑛 and 𝜎 be any sigmoid activation 
function, then the sum of the form

𝑓𝑁𝑁 𝒙 = 𝐴2𝜎 𝐴1𝑥 + 𝑏1 = ෍

𝑗=1

𝑚1

𝜎2𝑗𝜎 𝐴1𝑗𝑥 + 𝑏1𝑗

is dense in 𝑋.

Given any 𝑓: 𝑋 → 𝑅 and 𝜖 > 0, there is a finite sum 𝑓𝑁𝑁 as above for 
which 𝑓 − 𝑓𝑁𝑁 𝑥 < 𝜖 for all 𝑥 ∈ 𝑋.

The above theorem means that NNs with one hidden layer and sigmoid activation function can 
approximate any continuous univariate function on a bounded domain with arbitrary accuracy
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Leshno et al., 1993

Let 𝑋 be any compact subset of ℝ𝑛 and 𝜎 be any sigmoid activation 
function, then the sum of the form

𝑓𝑁𝑁 𝒙 = 𝐴2𝜎 𝐴1𝑥 + 𝑏1 = ෍

𝑗=1

𝑚1

𝜎2𝑗𝜎 𝐴1𝑗𝑥 + 𝑏1𝑗

is dense in 𝑋 iff 𝜎 is not a polynomial function.

Similar theorems were developed for other activation functions such as ReLU, 
step, tanh, etc which are non-polynomial functions.

The above theorem means that NNs with one hidden layer and sigmoid activation function can 
approximate any continuous univariate function on a bounded domain with arbitrary accuracy
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Universal Approximation Theorem – Depth

• The arbitrary depth case has attained a lot of research interest 
recently, especially after the introduction of deep learning as a 
separate domain in ML
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Examples

𝑦 = 𝑅𝑒𝐿𝑈 0𝑥 + 5
𝑦 = 𝑅𝑒𝐿𝑈(2𝑥 + 4)

One Hidden Layer Neuron

𝑦 = 𝑅𝑒𝐿𝑈(−0.5𝑅𝑒𝐿𝑈 2𝑥 + 4 + 5)

Two Hidden Layers

𝑦 = 𝑅𝑒𝐿𝑈 −2𝑅𝑒𝐿𝑈 −0.5𝑅𝑒𝐿𝑈 2𝑥 + 4 + 5 + 3

Three Neurons

ReLU or Rectified Linear Unit

𝜎 𝑥 = max 0, 𝑥 = ቊ
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

 

We assumed width 𝑊 = 1
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Examples

𝑦 = 𝑅𝑒𝐿𝑈 0𝑥 + 5
𝑦 = 𝑅𝑒𝐿𝑈(2𝑥 + 4)

One Hidden Layer Neuron

𝑦 = 𝑅𝑒𝐿𝑈(−0.5𝑅𝑒𝐿𝑈 2𝑥 + 4 + 5)

Two Hidden Layers

𝑦 = 𝑅𝑒𝐿𝑈 −2𝑅𝑒𝐿𝑈 −0.5𝑅𝑒𝐿𝑈 2𝑥 + 4 + 5 + 3

Three Neurons
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Examples

For NNs with one neuron per layer and ReLU activation function, the 
output can be either 
• a straight line
• piecewise linear curve with one fold
• piecewise linear curve with two folds
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Question

After two folds, can the subsequent layers add any further folds 
for one neuron per layer?
If so, how?
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Lu et al., (2017)

Except for a negligible set, all functions f: ℝn → ℝ cannot be 
approximated by any ReLU network whose width 𝑊 ≤ 𝑛.

• Width-1 NNs can approximate only a small class of univariate functions
• The minimum width required for universal approximation should be 

greater than 1.
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Lu et al., (2017)

Issue: Finding the minimum width for universal 
approximation with deep NNs.
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Lu et al., (2017)

For any Lebesgue measurable function 𝑓: ℝ𝑛 → ℝ and 𝜖 >
0, there exists a network 𝑓𝑁𝑁 width 𝑊 ≤ 𝑛 + 4 with ReLU 
activation function which satisfies

∫ 𝑓 𝑥 − fNN x dx < 𝜖

• NNs with arbitrary hidden layers and at most 𝑛 + 4 number of 
neurons per layer can approximate any functions in a Lebesgue 
integrable space with sufficient accuracy
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Park et al., (2017)

The minimum width required for universal approximation of 

Lebesgue integrable functions 𝑓: ℝ𝑛 → ℝ𝑚 is 𝑚𝑎𝑥[𝑛 + 1, 𝑚]

• the minimum width required for universal approximation in deep 
NNs is 𝑛 + 1

• Width-2 NNs with a suitable activation function are also universal 
approximators for continuous univariate functions.



Proof of Universal 
Approximation Theorem

178
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Notation

Let 𝜎: ℝ → ℝ be increasing, continuous and lim
𝑥→−∞

𝜎 𝑥 = 0 and 

lim
𝑥→∞

𝜎 𝑥 = 1

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝐾 be a compact subset of ℝ𝑛 

0-1 Squashing Function
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Notation

𝒩1 = 𝑓 ∈ 𝐶 𝐾 : 𝑓 x1, x2, ⋯ , 𝑥𝑛 = ෍

𝑖=0

𝑛

𝑎𝑖𝑥𝑖

For some 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℝ
𝒩1

𝜎 = 𝑓 ∈ 𝐶 𝐾 : 𝐹 = 𝜎 ∘ 𝑓, for some f ∈ 𝒩1

• 𝒩1 is the set of all affine functions of 𝑥1, 𝑥2, … , 𝑥𝑛

• 𝒩1
𝜎  is the set of all possible node output functions in Layer 1
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Notation

𝒩𝑘+1 = 𝑔 ∈ 𝐶 𝐾 : 𝑔 = 𝑎0 + ෍

𝑖=1

𝑚

𝑎𝑖𝐹𝑖

For some 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℝ, 𝐹𝑖 ∈ 𝒩𝑘
𝜎

𝒩𝑘+1
𝜎 = 𝐺 ∈ 𝐶 𝐾 : 𝐺 = 𝜎 ∘ g, for some f ∈ 𝒩𝑘+1

• 𝒩𝑘+1
𝜎  is the set of all possible node output function in Layer 𝑘 + 1

• 𝒩𝑘
𝜎 ⊂ 𝒩𝑘+1

• If 𝑔1, 𝑔2 ∈ 𝒩𝑘, then 𝑎0 + 𝑎1𝑔1 + 𝑎2𝑔2 ∈ 𝒩𝑘  for all 𝑎0, 𝑎1, 𝑎2 ∈ ℝ
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Separation Lemma

Let us show that 𝜎 separates points in ℝ𝑛 in a strong sense

Let 𝑥0 and 𝑥1 be distinct real numbers. For each 𝜖 > 0, there exist 
𝑠, 𝑡 ∈ ℝ such that 𝜎 𝑠 + 𝑡𝑥0 < 𝜖 and 𝜎 𝑠 + 𝑡𝑥1 > 1 − 𝜖. If in 
addition, 𝑥0 < 𝑥1 and 𝜖 < 1/2, then 𝜎 𝑠 + 𝑡𝑥 < 𝜖 on the interval 
(−∞, 𝑥0] and 𝜎 𝑠 + 𝑡𝑥 > 1 − 𝜖 on the interval [𝑥1, ∞)
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Separation Lemma

Proof [First Part]:
WLOG: 𝜖 < 1. By 0-1, squashing function, there exist 𝑦0, 𝑦1 ∈ ℝ such that 

𝜎 𝑦0 =
𝜖

2
 and 𝜎 𝑦1 = 1 −

𝜖

2
.

1 𝑥0

1 𝑥1

𝑠
𝑡

=
𝑦0

𝑦1

When does it have a solution? Does the condition satisfied from our 
hypothesis? Can you fill the remaining proof?

Let 𝑥0 and 𝑥1 be distinct real numbers. For each 𝜖 > 0, there exist 𝑠, 𝑡 ∈ ℝ such that 𝜎 𝑠 + 𝑡𝑥0 < 𝜖 and 
𝜎 𝑠 + 𝑡𝑥1 > 1 − 𝜖. If in addition, 𝑥0 < 𝑥1 and 𝜖 < 1/2, then 𝜎 𝑠 + 𝑡𝑥 < 𝜖 on the interval (−∞, 𝑥0] and 
𝜎 𝑠 + 𝑡𝑥 > 1 − 𝜖 on the interval [𝑥1, ∞)
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Separation Lemma

Proof [Second Part]:

𝑥0 < 𝑥1 and 𝜖 <
1

2
. 𝜎 is monotone and 

𝜎 𝑠 + 𝑡𝑥0 < 𝜖 <
1

2
< 1 − 𝜖 < 𝜎 𝑠 + 𝑡𝑥1

𝜎(𝑠 + 𝑡𝑥) is increasing. Hence the lemma  

Let 𝑥0 and 𝑥1 be distinct real numbers. For each 𝜖 > 0, there exist 𝑠, 𝑡 ∈ ℝ such that 𝜎 𝑠 + 𝑡𝑥0 < 𝜖 and 
𝜎 𝑠 + 𝑡𝑥1 > 1 − 𝜖. If in addition, 𝑥0 < 𝑥1 and 𝜖 < 1/2, then 𝜎 𝑠 + 𝑡𝑥 < 𝜖 on the interval (−∞, 𝑥0] and 
𝜎 𝑠 + 𝑡𝑥 > 1 − 𝜖 on the interval [𝑥1, ∞)
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Separation Lemma

Let us show that 𝜎 separates points from closed sets using functions in 𝒩2 in 
strong sense. i.e, one layer is sufficient to separate points from closed sets.

Let 𝐵 ⊂ 𝐾 be a closed set and 𝒙0 ∈ 𝐾 − 𝐵. For each 𝜖 > 0, there 
exists 𝑔 ∈ 𝒩2 such that 𝑔 > 1 − 𝜖 on 𝐵 and 𝑔 𝒙𝟎 < 𝜖.

Using a 2-hidden-layer network, we can separate one outside point from an 
entire closed set - do a “soft indicator” that is near 0 at 𝑥0and near 1 on 𝐵
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Separation Lemma

Proof:

WLOG: 𝜖 <
1

3
. Let 𝒃 ∈ 𝐵 ⇒ 𝒃 ≠ 𝒙𝟎 ⇒ ∃𝑓𝑏 ∈ 𝒩1 s.t. 𝑓𝑏 𝒙𝟎 <

𝜖

2
 and 𝑓𝑏 𝑥0 > 1 −

𝜖

2

𝑈𝑏 = 𝒙 ∈ 𝐾: 𝑓𝑏 𝒙 > 1 − 𝜖
𝑓𝑏is continuous ⇒ 𝑈𝑏 is open and 𝑏 ∈ 𝑈𝑏. 𝑈𝑏 𝑏∈𝐵 is an open cover of the compact set 𝐵.
Therefore, ∃ a finite subcover {𝑈𝑏1, 𝑈𝑏2

, … , 𝑈𝑏𝑛
} that covers 𝐵

By above lemma, ∃𝑠, 𝑡 ∈ ℝ, 𝑠. 𝑡. 𝜎 𝑠 + 𝑡𝑥 < 𝜖/𝑁 on (−∞, 𝜖) and 𝜎 𝑠 + 𝑡𝑥 > 1 − 𝜖 on (1
− 𝜖, ∞)

Define 𝐹𝑗 = 𝜎 𝑠 + 𝑡𝑓𝑏𝑗
⇒ 𝐹𝑗 ∈ 𝒩1

𝜎 , 𝐹𝑗 𝑥0 < 𝜖/𝑁 and 𝐹𝑗 > 1 − 𝜖 on 𝑈𝑏𝑗

Define 𝑔 = σ𝑗
𝑁 𝐹𝑗, proof follows immediately.

Let 𝐵 ⊂ 𝐾 be a closed set and 𝒙0 ∈ 𝐾 − 𝐵. For each 𝜖 > 0, there exists 𝑔 ∈ 𝒩2 such that 𝑔 > 1 − 𝜖 on 𝐵 and 𝑔 𝒙𝟎 < 𝜖.
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Separation Lemma

Let us show that two hidden layers suffice to separate disjoint closed sets, in a 
sense very similar to the previous lemma.

Let 𝐴 and 𝐵 be disjoint closed subsets of 𝐾. Then for each 𝜖 > 0
1. ∃ℎ ∈ 𝒩3 such that ℎ < 𝜖 on 𝐵 and ℎ > 1 − 𝜖 on 𝐴
2. ∃ 𝐻 ∈ 𝒩3

𝜎  such that 0 ≤ 𝐻 < 𝜖 on 𝐵 and 1 − 𝜖 < 𝐻 ≤ 1 on 𝐴
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Separation Lemma

Proof:

WLOG: 𝜖 <
1

3
. Let a ∈ 𝐴, by above lemma, ∃෦𝑔𝑎 ∈ 𝒩2 such that෦𝑔𝑎 > 1 −

𝜖

2
 on 𝐵 and 

෦𝑔𝑎 𝑎 <
𝜖

2
. Let 𝑔𝑎 = 1 − ෦𝑔𝑎 ⇒ 𝑔𝑎 ∈ 𝒩2 and 𝑔𝑎 <

𝜖

2
 on 𝐵 and 𝑔𝑎 𝑎 > 1 −

𝜖

2

𝑈𝑎 = {𝑥 ∈ 𝐾: 𝑔𝑎 𝑥 > 1 − 𝜖}
𝑔𝑎 is continuous⇒ 𝑈𝑎 is open. Since 𝑎 ∈ 𝑈𝑎 ⇒ 𝑈𝑎 𝑎∈𝐴 is an open cover of 𝐴 ⇒Finite 
subcover for 𝐴 (Why?)

Let 𝐴 and 𝐵 be disjoint closed subsets of 𝐾. Then for each 𝜖 > 0
1. ∃ℎ ∈ 𝒩3 such that ℎ < 𝜖 on 𝐵 and ℎ > 1 − 𝜖 on 𝐴
2. ∃ 𝐻 ∈ 𝒩3

𝜎 such that 0 ≤ 𝐻 < 𝜖 on 𝐵 and 1 − 𝜖 < 𝐻 ≤ 1 on 𝐴
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