


Simple Game

Draw a house on a paper



90% of people have drawn a house like

[\
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Question:

How many of your houses are
like this?



Simple Song



Twinkle, twinkle, little star,
How | wonder what you are!
Up above the world so high,
Like a diamond in the sky.




Twinkle, twinkle, little star,
How | wonder what you are!
Up above the world so high,
Like a diamond in the sky.



Then the traveller in the dark
Thanks you for your tiny spark;

He could not see which way to go,
If you did not twinkle so.

When the blazing sun is gone, In the dark blue sky you kee!o,

When he nothing shines upon, And often through my curtains peep,
Then you show your little light, Ff)r you nev.er.shut your €ye

Twinkle, twinkle, all the night. Tillthe sun is in the sky.

As your bright and tiny spark
Lights the traveller in the dark,
Though | know not what you are,
Twinkle, twinkle, little star.



Who wrote this?
(from "The Star," Jane

Taylor, 1806)
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Question:

How many words were in
red /green/blue?



Another Game

Rapid Fire Round: Quiz



What does it represent?

Rectangle



What does it represent?

W =mg

Weight = mass times gravity



What does it represent?

F = ma

Newton’s Second Law



What does it represent?

Yy = mx

Equation of Straight Line



What does it represent?

Z =Xy



What does it represent?

hyperbolic paraboloid
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What does it represent?

A = Tr?

Area of a Circle



What does it represent?

E = mc?

Einstein Equation



What does it represent?

y = ax?

Parabola



What does it represent?

Z =Xy
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What does it represent?

a“ + b* = c*

Pythagoras Theorem



What does it represent?

x2 + 2 =12

Equation of Circle



What does it represent?

x2 + y2 = 72

Some 3D equation



What does it represent?

x2 +y% =72




What does it represent?

9 ’ 9
<x2 +Zy2 + z% — 1) — x%z3 —%yzf =0



x*+—yc+z%—1
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y2Z3 =0
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Labrador Retriever

German Shepherd

360 Globally
Recognized Breeds

French Bulldogs

Rajapalayam Dog

The American Eskimo Dog
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Breeds

T
S

[\
ra )

¢ e et
r Silver Shaded . &8
W Beitish Shorthair

. ==
s,

SR N

Japanese Bobtail

“<

Black Tortie Maine Ragdoll




Approximately 400,000
Flowering Plants



https://nayturr.com/types-of-dinosaurs/

S~ A g

Pterodactyl Silvisaurus Lirainosaurus lguanodone Brontosaurus
Gallimimus Isanosaurus Ichthyosaurus Mosasaurus Diplodocus
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Tyrannosaurus Styracosaurus Baryonyx Raptor Stegosaurus

Carnotaurus Tsintaosaurus Ankilosaurus Parasaurolophus Europasaurus

Andesaurus Cuelophysis Allosaurus Spinosaurus Brachiosaurus
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CONGRATULATIONS! YOU HAVE
DONE THE LABELLING JOB WELL.

I MEAN YOU ARE FIT TO LEARN MACHINE LEARNING CONCEPTS

LET US EXPLORE MORE DETAILS WITH
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You are a police officer in this interesting game and your job is to help the old detective find the bank robbers.
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el SN dwerr fredf

o 0 What is “learning” in ML?

TIRUPATI

Hard question to answer. Let us give a fuzzy answer at a enough high level
of abstraction

1. Algorithms that solve some kind of inference problems
2. Models for datasets

Does the image have only books?

Panchatcharam



el SN dwerr fredf
1
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0 [ A A Why and What in ML?

TIRUPATI

Statistical Inference

Statistical inference is the process of using data analysis to deduce
properties of an underlying probability distribution.

Inferential statistical analysis infers properties of a population, for example
by testing hypotheses and deriving estimates.

Does the image have only books?

Panchatcharam



el SN dwerr fredf

LT Why and What in ML?

TIRUPATI

What does a ML algorithm do?

Machine learning algorithms are not algorithms for performing inference.
Rather, they are algorithms for building inference algorithms from examples.

An inference algorithm takes a piece of data and outputs a decision (or a
probability distribution over the decision space).

Panchatcharam




Modeling

TIRUPATI

Second type of problem associated to ML

“Given a dataset how | can succinctly describe it (in a quantitative,
mathematical manner”

Example: Regression Analysis

Geometric Models: Probabilistic Models:

The general problem is that we have The basic task here is to find a probability

example data points distribution that describes the dataset
X1, X5, , Xy € RP {x,,}

We want to find some kind of geometric
structure that (approximately) describes
them.

Panchatcharam
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TIRUPATI

Classification:

From data to
discrete classes

-

g

— Spam Filtering

~

J

-

~

Object
Detection

Weather
Prediction

(rain, snow)

Panchatcharam

Regression:

predict a numeric
value

Stock Market

. J

( )

Weather
Prediction

Collaborative

Filtering:
Recommendation

(Temperature)
g J

Find Similar
images

ML Examples



AR Hren e weens foeafa

i 0 ML Examples

TIRUPATI

Clustering:
discovers structure
in data

Embedding: Structured
Visualize data Prediction: from
o Images words data to discrete

e Cluster Point or classes

images

e Speech Recognition
e Cluster web search

e NLP

Panchatcharam
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TIT

TIRUPATI

Supervised Learning
= Builds a Mathematical Model

= Contains input and output data: Training Data

SL

= Relations : Supervisor Signals, F(x) ;
= Each training example: Array or Vector

" Training Data: Matrix
" |[terative optimization

Panchatcharam

Source: Educative.io



WWW@WW

TIRUPATI

UL

Unsupervised Learning

= Takes only input

" Finds the structure in the data
» Groups/Clustering data

= Classifies DEL ' \ B
= React based on the presence of such

commonalities in each new piece of
data ( Input Raw Data ) ( Algorithm )

= Statistical analysis (density
estimation function)

= Weighted to finding probabilities of i
outcomes (conditional probability) T (nereain ) (_pocessing )

Source: tecnative.io

Panchatcharam
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TIRUPATI

Reinforcement Learning

= Give rewards for every positive result and make
based on an algorithm

Reinforcement Learning in ML
Input Raw Data

= Agent-Based Learning: Learns by interacting with
the environment

Environment

RL

Output
" Trial-and-Error: Receives rewards or penalties for
actions

= Objective: Maximize cumulative rewards over time
= Decision Process: Uses Markov Decision Process
(MDP) framework

ee(c)riinno _)
2 [ e
= Exploration vs. Exploitation: Balances between

trying new actions and using learned knowledge

= Optimization: Iterative improvement of policies
(e.g., Q-learning, Policy Gradient methods)

Panchatcharam

Source:https://techvidvan.com/
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i 0 Three Different Types of ML

TIRUPATI

Unsupervised Reinforcement

Learning Learning

4 N
— Labeled Data — No Labels — Decision Process

N\ J

4 N 4 N
— Direct Feedback —  No Feedback — Reward System

\ J . )

e N ~ B
| Predict N Sl,:tlrljjc'lc_luurj:seirr]m .| Learnfrom

Outcome/Future Series of Actions
Data
\ J & Y,

Panchatcharam
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TIRUPATI

Mathematics for Machine Learning
Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,
IIT Tirupati

Panchatcharam

64



WWWW

TET References

TIRUPATI

Books (https://machinelearningmastery.com/products/)

» S. Cristina, M. Saeed, Calculus For Machine Learning, Machine Learning Mastery
» M. P. Deisenorth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning

» J. Brownlee, Optimization for Machine Learning

» ). Brownlee, Basics of Linear Algebra for Machine Learning

2 MACHINE LEARNING

MASTERY £ HEIIEIE‘IE'IHHHIH

@ MACHIME LEARMING
A \sTeRy

Basics
of Linear
Algebra

MATHEMATICS

Calculus
for Machine
Learning

Optimization

MACRINE LEARNING for Machine

Learning

FOR MACHINE LEARNING

Understanding the

Language of Mathematics Driscover the Mathematical

Language of Data in
i,

Python
Jason Brownlee

Finding Function Optima
with Python

Marc Peter Deisenroth
A. Aldo Faisal 1l

Cheng Soon Ong

Jason Brownlee

Panchatcharam
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i 0 ff References
TIRUP A T I
Books (https://machinelearningmastery.com/products/)
» Robert Nowak, Mathematical Foundations of Machine Learning
» T. Xiao and J. Zhu, Foundations of Large Language Models, http://arxiv.org/abs/2501.09223v1
» Seongjai Kim, Mathematical Foundations of Machine Learning, Lecture Notes
» Justing Romberg, Mathematical Foundations of Machine Learning, Lecture Notes
OREILLY e AbDISON-WESLEY DATA & ANALYTICS SERIES
Mathematical Foundations of Machine Learning umm““
ands_on Subcontent Oy BU'LDA $2 | SECOND EDITION
Large Language : QUICK START GUIDE TQ
Models & | WAE]=

Language Understanding
and Generation

LANGUAGE

Strategies and Best Practices for
ChatGPT, Embeddings, Fine-Tuning, :
and Multimodal Al e

Sebastian Raschka o JHE A M O D E LS

© 2022 Robert Nowak

i"%

Jay Alammar & ‘
Maarten Grootendorst —
L | FTTTHT i SINAN OZDEMIR
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http://arxiv.org/abs/2501.09223v1
http://arxiv.org/abs/2501.09223v1
http://arxiv.org/abs/2501.09223v1
http://arxiv.org/abs/2501.09223v1

[f Data i1s the fuel of Al, Linear
Algebra 1s its Engine and
Vector Calculus is the
Navigation /Control System



Data, Linear Algebra, and Vector Calculus:
Al’'s Powertrain

- - @O

ST
Data: Al’s Fuel Linear Algebra: Vector Calculus:
Raw information Al’s Engine Al’'s Navigation
powering the system Vectors, matrices, Guides learning,
embeddings, optimization, and
transformations information flow

Linear Algebra moves the Al; Vector Calculus tells it where
and how to move efficiently.
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Machine Learning in
Mathematical Way



u|\ Supervised Learning

§ Assumption: Given a data set {(x;,y;)},3 arelationf: X - Y

§ Supervised Learning:
» Given: Training Set {(x;, y;)|i = 1,2,-:+, N}
» Find: f: X — Y a good approximation to f

Panchatcharam




Y value

» Girls vs Boys

4 E;-;E';" o
I:ID (=] ” o [w]
o o E"w N
qu O
o A g o
a Qg O
[
g c@q} oo
; s}
a g I% o] &a
] fa] 0/0.-% =) C
w] ] o
[ole g
8 ©
wf, 0 ©
- o )
o True line
o ~——— Bestfit
I T T T
-2 0 2 4 5
. Covariate value
Regression
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i 0 Simple Example

TIRUPATI
2 : |
fx) 0 1
o 0:0 O.‘Z 0:4 0:6 0:8 1.‘0 1:2 1.‘4 1:6 15
sin(x)
m] O  sin(x) with noise
1]
Consider 10 points generated from a sine function with noise
a
a
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Panchatcharam
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TIRUP AT I
Which is Best?

Regression: n=0

1l m]
a
05F o
o
> 0
L] a
0.5 o
m]
.]_ F
-15
0 0.2 0.4 0.6 0.8
X
Regression: n=3
1.5 T T T T

1.5 1 1 1 1

-1.5

a 0.2 0.4 06 0a
X

Panchatcharam

1.5

Regression: n=1

n2

0.4 0.6
X

%]

1.5

Regression: n=4

0.2

0.4 a6

0.8

-1.5

Simple Example

n=2

1.5

Regression:

1.5

2

0.4 0.6
X

Regression:

n=6

D& 1

a2

0.4 [N ]

0.8 1
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i 0 Simple Example
TIRUPATI
Which is Best?

Regression: n=7 Regression: n=9

1.5 Regression: n=8 15
1.5 T T T

1H
0.5
= 0

m
-0.5

1 -

15 : ! ! : -1.5 L L L L 15 : ! ! :
0 0.2 0.4 0.8 0.8 1 4] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.8 0.8 1
A X A
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i 0 i fi SSE or LSE

TIRUPATI

How do you measure it?

Given several models with similar explanatory ability, the simplest is most likely to
be the best choice

Least Square Error or SSE

Given a dataset {(x;, y;)|i = 1,2, -, m} and the model B,, define the LS Error as

E, = ;(Yi — Pn(xi))z

It is also called the mean square error if we divide it by the sample size.

Panchatcharam



\'IMMI\ MS or LS Error

TIRUPATI

Least Square Error

The best choice is P 45

¢ —&—Training
v - ®-Test |

LS-Error

Panchatcharam




IIT Occam’s Razor Principle

Law of Parsimony

One should not increase, beyond what is necessary, the number of entities
required to explain anything

 When many solutions are available for a given problem, we should select the simplest one
 What do you mean by simple?
(JUse prior knowledge of the problem to solve to define what is a simple solution.

Panchatcharam




Binary Classifiers



i 0 Binary Classifier
TIRUPATI
Binary Classifier

A function which can decide whether given input vector
belongs to some specific class or not.

e |t refers to those classification tasks that have two class labels

* A type of linear classifier
* A classification algorithm that makes its prediction based on a

linear predictor function combining a set of weights with the

feature vector
* Linear classifiers are artificial neurons

Panchatcharam
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XN Human Brain: Mystique and Mystery

Cell body
Telodendria

Nucleus \

i oea ™

Axon hillock ) Synaptic terminals
p— = m—

Endoplasmic

: Golgi apparatus
reticulum %

>

Mitochondrion " ™ Dendrite

\
/ \ :
/ % Dendritic branches Dendrite

. oY -
\ i ™ - <o
S | |
\ F

Cell body

Axon Schwann cell

Myelin sheath
Nucleus
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i 0 Linear Classifiers
TIRUPATI
Linear Classifier

As artificial neurons, Linear classifiers have the following characteristics

Activation .
: Decision/Output
Function
4 N 4 N
Each Feature has
i : Class 1, if
Feature Values x a weight Weighted sum ’
" & ¢W(x) >0
\_ J \_ J
e A r R
dw(x) = Z WiX; = wx Class 2, if
j b, (x) <0
\_ J \_ J

Panchatcharam
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WR drenfiret dwera freufa

\MMM” Perceptron

TIRUPATI

Invented by Frank Rosenblatt (1957), Built on work of Hebbs (1949), Improved by
Widrown-Hoff (1960),
Learning Methods for two-layer neural networks (1970) Perceptron

Activation

Function

-

z)=1

L X = (xpxz:'”;xn)T dif( )> p
Z 2=
\_ J
- ~
0 is a threshold ¢(z) = -1
otherwise

\ Y.
Panchatcharam
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i I i

TIRUPATI

Perceptron

A perceptron is a linear classifier that decides between two classes by drawing a straight

line (or hyperplane) to separate them.

Z=wg+ ) wix; =w'lx
L X = (1;x1;x2;“.;xn)T W = (WO;W1;W;"';Wn)T 0 Z J7
]

wo = —0, called bias in ML

Panchatcharam

Perceptron

Activation

Function

¢(z) =1

fz>0

B(z) = -1

otherwise




Mathematical view of Perceptron

Z=W0+szXj =wlx
J

letustaken = landsee,z=wy+w;x;y >y=ax+b

The equation z = w! x represents a hyperplane in R", whereas w, decides the intercept

What is unknown here? 1. Initialize weights to 0 or small random numbers

2. For each training sample x!

a) Find the output value y! = ¢(z})
b) Update the weights

Panchatcharam




IIT Update Weight Vector

w=w+ Aw, Aw = n(y' — §')x!

nis the learning rate, 0 < n < 1,
y is the true class label of the it" training sample,
y' is the predicted class label of the it" training sample

What will be Aw?

1. If prediction is correct
2. What will be it if the prediction is wrong

Panchatcharam




@[IT Separable Dataset

TIRUPATI

A dataset {(xi, yi)} is Iinearly separable if there exists W and y such that
y'wTxt >y > 0,Vi
where y is called the margin

Let X and Y be two sets of points in an

R™. Then X and Y are linearly separable

if there exists w € R™ and k € R such

that every point x € X satisfies

wlx > k and every point y € Y satisfied
wly <k

Panchatcharam




0 Ty 0y . [y =
HINCTT HIKITHTDT FRT KO YI

i i i SVM

TIRUPATI

For linearly separable training dataset

1. Perceptron always converge

2. Separability: Some weights get the
training set perfectly correct

Support Vector Machine (SVM) chooses the linear separator with
the largest margin.

Panchatcharam
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HINCTT HIKITHTDT FRT KO YI

i 0 Adaline Algorithm

TIRUPATI

1. Weights are updates based on ¢(z)

2. Suppose ¢(z) = z (Identity Function)

3. This algorithm is interested to define a cost function and minimize it

4. Continuous cost function allow the ML optimization problem to Calculus Problem

Output

=@—‘ Output

Net i‘nput Activation Threshold
function function function

Adaptive Linear Neuron (Adaline)

Panchatcharam
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TEE Adaline Learning

TIRUPATI

Given a dataset {(xi,yi),i =12, N}
Learn the weights w; and bias b = wy
Activation Function

¢(z) =z
Cost Function (SSE)

J(w,b) = %z (v~ #(z))

zZP=wlix'+ b

Panchatcharam




TIT Gradient Descent Method

TIRUPATI

Dominant algorithm for the minimization of the cost function

Compute —VJ for the search direction (update direction)
w=w+Aw =w—nV,,J(w, b)

b=b+Ab=b—nV,J(w,b)
Where nn > 0 is the step length (learning rate)

Aw = -V, I(w,b) =7 z (yi — gb(zi)) x*

Aw = —nV,I(w,b) = UZ (yi — ¢(Zi))

Panchatcharam
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TIRUPATI

Activation Function

1 if z=0
—1 otherwise

o]

1 3 e’
l1+e 2 1+ e%

¢(z) =

This helps to identify the probability of individual classes

Panchatcharam




Unsupervised Learning



Unsupervised Learning

In unsupervised learning, we deal with unlabeled data or data of
unknown structure. Using Unsupervised learning, we can explore

the structure of our data to extract meaningful information without
the guidance of a known outcome variable or reward function

Panchatcharam




Source: Google Search, Unmanned Island
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JIT Unsupervised Learning

§ Assumption: Given an unlabeled dataset {x;},

§ Unsupervised Learning:
» Given: Training Set {x;|i = 1,2,---, N}
» Find a similar cluster or density estimation or dimensionality reduction

Panchatcharam
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: |II i Unsupervised Learning: Clustering
IRUPATI

§ Assumption: Given an unlabeled dataset {x;},

meinzz 1Gi, o) llx; — pell?

I ceC
C: set of clusters

[(i, c): indicator function

, 1 x; €Ec
I(, c) = {O xl & C
l

U.: Centroid of the cluster

Panchatcharam



I hIT Unsupervised Learning: Density Estimation

TIRUPATI

§ Assumption: Given a unlabeled dataset {x;}, estimate the
probability distribution (MLE)

p(x) = arg max 1_[ p(x;)

p(x) : Probability density functions of the data
Find the distribution that maximizes the MLE.

Panchatcharam




il Unsupervised Learning: PCA

§ Assumption: Given an unlabeled dataset x; € R4 reduce to a low-
dimensional space z; € R¥. Principal Component Analysis (PCA)
can be formulated as finding the projection

Zi = WTXi

W € R%*¥ is a projection matrix that maximizes the variance in the

reduced space
max ) (W2
W .
l

Panchatcharam




Reinforcement Learning



»
L

. . » - o. .
ity

107



I Reinforcement Learning
TIRUPATI

It is the science of decision-making combining ML and Optimal

» Learning the optimal behavior in a dynamic environment -
maximum reward.

» Optimal behavior is learned through interactions with the

environment and observations of how it responds
» No need for labeled input/output pairs

» In the absence of a supervisor, the learner must
independently discover the sequence of actions that
maximize the reward.

» This discovery process is similar to a trial-and-error search.

Panchatcharam



MM\ i Reinforcement Learning

TIRUPATI

Y-LNhiHThe learner or decision maker
MThe external system with which the agent interacts

m(st):The representation of the current system in the environment
at time step t

M(at):The action taken by the agent at time step t

(rt):The scalar feedback received after taking action (a;) at
time step t in state s,

el 17 S — A, where S set of all states, A set of all actions
VCIORAT T d{e 3 8 (V™ ) :Estimates how good a particular state

Action-Value Function [{(A83H 3531 E1EER R T T6 (Lo Mol Vo [T EVAYR EET (e

Panchatcharam



MM\ u|\ Reinforcement Learning

TIRUPATI

Markov Decision Process
M =(S5AP,71,v)

S: Possible States
A : Possible actions

P(s¢11]|s¢, az): probability of moving from state s; to s;,; when
action a; is taken

1+: reward function, immediate reward after taking action a;

Yy € |0,1]: discount factor, helps to identify future rewards relative
to immediate rewards

Panchatcharam
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i |I Bellman Optimality Equation

TIRUPATI

Value Function and Bellman Equation
V®(se, ar) = EF[r + yV™(St44)]

Q" (sg,ar) = E¥[ry + yQ™ (Se41, Apt1)]

V*(s; ) = maxV™(s;) and Q*(s;,a;) = max Q™ (s, a;)
T T

Optimal Action-Value Function

Q*(sp,ap) = E, ., [rt + y max Q" (s, at)]

At+1

Panchatcharam
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Self-supervised Learning

Self-supervised learning is a type of machine learning where a model
learns from unlabeled data by creating its own supervision signal. In
other words, the model generates pseudo-labels or uses part of the

data to predict another part, which allows it to learn useful
representations of the data without requiring human-provided labels.

Panchatcharam




JIT Self-supervised Learning

§ Assumption: Given a unlabeled dataset {x;},

§ Self-supervised Learning:
» Given: Training Set {x;|i = 1,2,---, N}
» Define pretext task to generate a supervisory signal from the data
» Corrupted or masked input x;™
» Target y; = x;

Panchatcharam




0 0 & Self-supervised Learning
TIRUPATI

§ Define f(x) model (neural network) that learns the
transformation of the input data xx into a useful representation.

§ Learned embedding of the input x;

L) = ) Leasi (FCI,70)

Panchatcharam
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TIRUPATI

Physics Informed Neural Network
Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,
IIT Tirupati

Panchatcharam
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Supervised Learning

" I[mages - inputs

= Labels (“dog”, “rose”, “aeroplane”) = outputs

=" Neural network - learns to map inputs to outputs by minimizing
an error (difference between predicted and true labels).
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il Supervised Learning

* What if | don’t have many labels, but | know the rules of the world

— like Newton’s laws, or a heat equation?
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TIRUPATI

"In supervised ML:
JYou train with data points and labels.

="In PINNSs:

(dYou train with data points (locations, times)
dInstead of labels, you use physical laws (PDEs) as a teacher.
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"In normal ML, the network learns from examples.

"In PINNs, the network learns from equations.
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Concept ML (what they already know) PINN (new link)
Input Image pixels Space-time coordinates (x, vy, t)
Fiel I L., , velocity,
Output Label (dog/flower) ield value (e.g., temperature, velocity
pressure)
Learning Source | Labeled data Physics law (e.g., Navier—Stokes, diffusion)

Cross-entropy / MSE with | PDE residuals + boundary/initial condition

Loss Function
labels losses

Goal Classify correctly Satisfy physics and match sparse data

Panchatcharam
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LW Nutshell

TIRUPATI
Stage Theme Concept
Stage 1 Learning from Labels Supervised ML
Stage 2 Learning from Similarity Unsupervised ML
Stage 3 Learning from Rules PINN

from observing data - discovering structure - obeying laws of nature.
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Nutshell

L
il o
TIRUPATI

“When you were children, you learned to identify dogs by
seeing many of them — that was data-driven learning.
Later, you learned about bones, muscles, and motion —
that’s physics.

PINNs are like scientists — they don’t just memorize; they
reason with equations.”
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i i i PDEs

TIRUPATI

u, = c’*u,,,x €[0,1],t >0
* u(x,t): temperature
e ¢?: thermal diffusivity
e BCs:u(0,t) =u(1,t) =0
* |ICs: u(x,0) = sin (mx)

Traditionally, we solve this with finite differences or FEM.

But what if a neural network could learn this solution?
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Introduction

Ordinary Neural Network

Learns from data (x > vy)

Physics Informed Neural Network

Learns from equations (e.g., PDEs)

Uses labeled examples

Uses physical laws

Needs lots of data

Can work with few data points

Input: Image - Output: Label

Input: (x, t) > Output: u(x, t)

Loss = (prediction - label)?

Loss = (PDE residual)? + BC/IC loss

Learns from data

Learns from Equations
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§ Assumption: Given a data set {(x;,y;)},3 arelationf:X - Y

§ Supervised Learning:
> Given: Training Set {(x;, y;)|i = 1,2,:--,N}
» Find: f: X — Y a good approximation to f

Mean Square Error or SSE

Given a dataset {(x;, y;)|i = 1,2, -, m} and the model B,, define the LS Error as

1 m
E, = E;(Yi — Pn(xi))z

It is also called the mean square error (MSE)
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IIT Neural Network

U(x,t,8): Small fully-connected NN
Use Automatic Differentiation (AD)

ou 62 U
folx,t) = == c?=—
Physics Loss:
Lppg = MSE(fo(x,1),0)
BC Loss:
Lgc = MSE(11(0,t),0) + MSE(ii(1,t),0)
Initial Loss:
L;c = MSE (ii(x, 0), sin(mx))
Total Loss:

L=Lppg + Lpc + Lj¢

Panchatcharam
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i 0 How to Learn?
TIRUPATI

i(x, t,0): Small fully-connected NN
Use Automatic Differentiation (AD)
ou 0%

fo(x,t) = Frin Czﬁ
Physics Loss:

Lppg = MSE(fy(x,t),0)
BC Loss:

Lgc = MSE(1(0,t),0) + MSE(4i(1,t),0)
Initial Loss:
L;c = MSE(ii(x, 0), sin(mx))

Total Loss:

L= Lppg + Lpc+ Ly

Level New Concept Example

Beginner PDE residual only Heat equation
Intermediate | Add ICs/BCs Wave eguation

Advanced Add measured data Wave tank, Navier—Stokes
Research Domain decomposition, adaptive sampling | Real 2D/3D simulations
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TIRUPATI

Library Use

PyTorch / TensorFlow | Custom PINN implementations
DeepXDE Simplifies PINN coding for beginners
SciANN TensorFlow-based PINN library

Modulus (NVIDIA) For high-performance PDE PINNs (later stage)
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@[IT Lecture Notes

TIRUPATI

1.SciML — Physics-Informed Neural Networks

Part of Scientific Machine Learning course lectures. KKS32 Courses

2.ETH Zurich — Deep Learning in Scientific Computing (Spring Semester 2023)
Lecture slides / applications of PINNs by Siddhartha Mishra, Ben Moseley. ETH Zirich
3.0xford University — Physics Informed Neural Networks Course

Dept. of Computer Science, Oxford has a course page for PINNs. Department of
Computer Science

4.Nature Article: Physics-Informed Machine Learning

5.Elsevier Article: Physics-informed machine learning: A comprehensive review on
applications in anomaly detection and condition monitoring

6.Springer Article: Physics-informed neural networks for PDE problems: a
comprehensive review
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https://kks32-courses.github.io/sciml/lectures/02-pinn/02-pinn.html?
https://ethz.ch/content/dam/ethz/special-interest/math/applied-mathematics/camlab-dam/documents/DLSC2023/DLSC23_05_PINN_applications.pdf
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/pinn/
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/pinn/
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://www.sciencedirect.com/science/article/pii/S0957417424015458
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7
https://link.springer.com/article/10.1007/s10462-025-11322-7

@[I\ "'\ Lecture Notes

TIRUPATI

1. ITU — “DL in Applied Mathematics” (Lecture on PINN)
Includes definitions, loss function discussions, advantages/disadvantages. |ITU

2. GitHub Tutorials
1. FilippoMB / Physics-Informed-Neural-Networks-tutorial (PyTorch notebook)

GitHub
2. AlirezaAfzalAghaei / PINN-tutorial (minimal PINN implementations in PyTorch)
GitHub
3. nguyenkhoa0209 / pinns_tutorial repository GitHub
3. DeepChem Tutorial
Introductory tutorial on PINNs using JAX / other tools on DeepChem site.

DeepChem
4. MATHEMATICAL LAB / PINA Tutorial
Tutorial on multiscale PDEs using Fourier-Feature Networks with PINNs MathLab
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https://iitu.edu.kz/documents/3421/Lecture_14_TQAJmps.pdf
https://github.com/FilippoMB/Physics-Informed-Neural-Networks-tutorial
https://github.com/alirezaafzalaghaei/PINN-tutorial
https://github.com/nguyenkhoa0209/pinns_tutorial
https://deepchem.io/tutorials/physics-informed-neural-networks
https://mathlab.github.io/PINA/tutorial13/tutorial.html

IIT Lecture Notes

1. Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://github.com/maziarraissi/PINNs

2. SciML: Open Source Software for Scientific Machine Learning https://sciml.ai/
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://github.com/maziarraissi/PINNs

A Few Fundamentals
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\'MMMI\ Basics

TIRUPATI

This Part of the lecture is based on the paper

A Survey on Universal Approximation Theorems, Midhun T. Augustine, 2024

An elementary proof of a universal approximation theorem, Chris Monico, 2024
A visual proof that neural nets can compute any function

Approximation by superpositions of a sigmoidal function

Universality of deep convolutional neural networks

Recurrent Neural Networks Are Universal Approximators

O UeEwWwNE
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https://arxiv.org/html/2407.12895v1
https://arxiv.org/html/2407.12895v1
https://arxiv.org/pdf/2406.10002
https://arxiv.org/pdf/2406.10002
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
https://link.springer.com/chapter/10.1007/11840817_66
https://link.springer.com/chapter/10.1007/11840817_66
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://link.springer.com/chapter/10.1007/11840817_66
https://link.springer.com/chapter/10.1007/11840817_66
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I NN or ANN

TIRUPATI

NN or ANN

A neural network (NN) or artificial neural network (ANN) is a network of artificial
neurons arranged in layers.

Perceptron

The artificial neurons (also called perceptron) are inspired

by biological neurons in biological neural networks (BNNs)
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KT UATs
TIRUPATI

UATs

UATs are theorems associated with the approximation capabilities of NNs.
i.e., the ability of an NN to approximate arbitrary functions.

UATs

In general, UATs imply that NNs with appropriate parameters
can approximate any continuous functions,

i.e. are generalized models that can represent complicated
relationships in the data
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IIT Few Notations

* Letx € R™ The p —norm or [P —norm of a vector x is
%] = 2P + P + - 2 |P) /7

e The LP norm of a function f: X — Y is defined as
1

171l = ( fX ||f(x>||,’§)p

* Asubset X of R" is said to be compact if it is closed and bounded
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IIT Neural Network

NN is a network of neurons arranged in layers

f{} f1 f|_ L+1
X ——"O _}% s e e O Y

e Nl
X: — Hr e e = —= }G
-0 9 O 250 ¥:

L ] \ L ] L 2 L ]
K
X, @ v - @ Yok v
Input layer Hidden layers Output layer
(a) (b)
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i 0 Neural Network

TIRUPATI

* NN is a network of neurons arranged in layers

* The layers are connected sequentially,

i.e., the output of each layer goes to the next layer as input.

* NNSs can represented using composite functions of the form

y=fnnx) = fra (fL ---fl(fo(x)))
where x € R", y € R™, fyn: R®™ = R™ is the NN function and f, f1, - f1+1 are
layers of the NN.

* foisthe input layer o :
* fr+1is the output layer 1o %z o
* f1 [z, fL are hidden layers s %

dell | . o

(a) (b)
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i 0 i fi Questions

TIRUPATI

 How many layers in total?
* If the number of hidden layers is L, then the total number of layers is

fo f1
LT
X, 0 p
% y"
X, 0 é
Input layer Hidden layers

(a) (b)
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i 0 NN-Mathematically

TIRUPATI

* Input of the it" layer be x;
* Output of the it"* layer be y;

yi = fi(x;) = 0;(A;x; + b;)
Where

!/

0; = [O'il:o'iz»'”o'imi]
They are elementwise activation functions for the it" layer, m; is the number of
neurons in it" layer.
e A; € R™Mi*™Mi-1 s the weight matrix
* b; € R™iis the bias vector
* Xx; € [R™Mi-1
* yi €R™
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i 0 List of Activation Function

TIRUPATI

RelLU or Rectified Linear Unit

0 ifx<0

o(x) = max(0,x) = {x if x>0

Step Function Logistic Function

1

70 =T

Tanh Function

X X

et —e

o(x) =tanhx = ——
(x) eX +e X

Panchatcharam
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TIRUPATI
RelLU Step
10 A 1.0 -

8 0.8

6 0.6
= =
B B

4 1 0.4

27 0.2

0 0.0

-10 -5 0 5 10 -10 -5 0 10

Panchatcharam

ol(x)

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

List of Activation Function

Logistic

llﬂ

Tanh
1.0 4
0.5 -
0.0 -
-0.5
-1.0
-10 -5 0 10
X
(d)




i 0 A few Terminologies

TIRUPATI

Neuron
Data processing units in NNs
vi; = 0i;(Aix; + b; ;)
Yi, is the output of the jt" neuron in the it" layer.
A,;]. = [a1 a, ... ami_l] is the j'" row of the weight matrix 4; and bl-]. is the jt"

element of the bias vector b;

Panchatcharam




0 Ty 0y . [y =
HINCTT HIKITHTDT FRT KO YI

i 0 A few Terminologies

TIRUPATI

Layer

* A collection of neurons that takes the same inputs.
* In general, layers are vector-valued functions.
e Layers can grouped into three categories: input, output, and hidden layers.

f() fl f[. f]_|]
DO Ty
X, @ >0 O 0 Y
X, @ %D oo O §3 Yo
Input layer Hidden layers QOutput layer

(a)
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I

TIRUPATI

each neuron
— has only one
input

it simply passes
the input

L 0'0(A0x+b0) =X

Panchatcharam

H

idden

Three Different Layers

Output

each neuron
can have more

{than one input

each neuron
can have more
than one input

gives a scalar
output

gives a scalar
output

|
|

o : nonlinear.

o: linear for regression

o:nonlinear for classifciaton
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TET Width, Depth, Shallow, Deep

TIRUPATI

Depth Shallow NN Deep NN

e ™ e A ~ N
maximum number of hidden . NN with more
NN with only one )
— number of layers plus output . than one hidden
: hidden layer
neurons in a layer layer layer
N J N J . Y,
s B e ™ - N
- W=mlaxml- D=L+1 D=2 D>2
- / \_ J N J
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Example

* One Input, One linear Output, One Hidden Layer with three Neuron
y = A01(A1x + by) + b,

3 —1
AZ — [01 0.3 07],141 =|-1 lbl — [ 4 ,b2 — 2, 01 = tanhx
2 0

What is your y? Derive it

y = 0.1tanh(3x — 1) + 0.3 tanh(4 — x) + 0.7 tanh(2x + 10) + 2

Change A, as follows
A,=[-0.40.2 —0.3],
A,=[-0.30.50.1],
A,=[0.2 — 0.7 0.6],
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I

TIRUPATI
3.00 4 2.75
2.75 - 2.50 -
2.50 - 2.25 -
> 2.25 - > 2.00 1
1.75 -
2.00 1 >
1.50 -
1.75 4
1.25 -
1.50 -
-10 -5 0 5 10 -10
x
(a)

Panchatcharam
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2.75 A

2.50

2.25 1

2.00 A

1.75 1

1.50 +

1.25 -

=10

-5

(

=

L]
[

Example

3.5 1

3.0+

2.5 1

> 2.0+

1.5 1

1.0 1

0.5 1

10



IIIT Question

TIRUPATI

These examples illustrate that we can represent complicated nonlinear
relationships using NNs

 The main use of NNs is modeling relationships in the data, the question of the
approximation capabilities of NNs gained interest naturally

Can we approximate any continuous function using NNs?
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Universal Approximation
Theorems (UATSs)



\'IMMI\ Question

TIRUPATI

* Arbitrary width case
e Arbitrary depth case

f,
O
f el N\_E foof Lo
x / \ Ly X——rO ‘O .. O :O——ry
\ . / Input layer Hidden layers Output layer

h.aO/.-
Input layer Hidden layer Output layer

Panchatcharam

(b)




I<T
]
|
@

TIRUPATI

Taylor’s Theorem (1715)

Consider the continuous function f: R — R. Let a € R where f is N-times
differentiable. Then f can be represented as a sum of polynomials

N — )"
Foo = fl+ Y LT g
n=1

Taylor’s theorem can be considered as a mathematical
foundation for linearization-based methods
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IIT Fourier (1807)

Consider the continuous and periodic function with period T. Then f can be
represented as a sum of sinusoids

N
2TTNX

f(x) =4, + Ancos< +¢n>
Y e (2

Here A_n is the amplitude and ¢,, is the phase of the nt" harmonic component.

It can be extended to non-periodic functions as well 2 Fourier Transform
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Wi Weierstrass (1885)

TIRUPATI

Any continuous real-valued function f: [a, b] = R can be approximated with a
polynomial of

N
Py(x) = 2 Cpx™
n=0

|f(x) — Py(x)| <€

such that
for any arbitrary e > 0

* Weierstrass Approximation theorem implies that any continuous function on a
closed interval can be uniformly approximated by a polynomial function with
arbitrary accuracy.

 The Weierstrass approximation theorem can be considered as a mathematical
foundation for polynomial regression and interpolation methods.
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TIRUPATI
Hilbert’s 13t" Problem

Question (Hilbert)

Can any continuous function of more than two variables be expressed as
a superposition of finitely many continuous functions of two variables?

This problem was solved by Arnold and Kolmogorov in 1957
which resulted in the Kolmogorov-Arnold representation
theorem
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Kolmogorov-Arnold Representation Theorem

Any continuous real-valued function f:[0,1]™ — R can be approximated with a
polynomial of

2n+1 n
FOO) = O = ) B[ D ()
j=1 i=0

Where ;;:[0,1] > Rand ;: R - R
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TIRUPATI

» Taylor = Approximation of differentiable function (N times) by a polynomial
* Fourier = Approximation of continuous function and periodic by sinusoids
e Weierstrass = Approximation of continuous function by polynomials

* Kolmogorov-Arnold = More than two variables as a superposition of finitely
many continuous functions of two variables.

Panchatcharam




IT Universal Approximation Theorem — Width

I UPATI

e After the introduction of Neural Networks, approximation capabilities
of sigmoid functions gained popularity, since in the initial versions of
NNs sigmoid functions were used as activation functions

The depth or number of layers in the NN is
considered to be bounded.
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Examples

One Hidden Layer Neuron
y = ReLU(2x — 4)
y = ReLU(—x — 3)

Two Neurons
y = ReLU(2x — 4) + ReLU(—x — 3)

Three Neurons
y = 0.3ReLU(2x — 4) + 0.7ReLU(—x — 3) — 0.5ReLU (4x — 20)

ReLU or Rectified Linear Unit

0 ifx<0
x ifx>0

o(x) = max(0,x) = {
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I hIT Examples

TIRUPATI

One Hidden Layer Neuron Two Neurons

y =RelU(2x —4)  ,, _ pory(2x — 4) + ReLU(—x — 3
y = ReLU(—x — 3) Y ( : ( )
Three Neurons

y = 0.3ReLU(2x — 4) + 0.7ReLU(—x — 3) — 0.5ReLU(4x — 20)

?-.
15.0 - 15.0 - 44
E-
12.5 - 12.5 1
5 2 1
10.0 - . 10.0 1
> 7.5 ™ > 7.5 ~ 0
3-
5.0 - 5 ] 5.0 1 -2 4
2.5 - 1- 2.5 1 4.
0.0 - 04 0.0 1
-10 -5 0 5 10 -10 -5 0 5 10 10 5 0 5 10 -10 -5 0 5 10
X

% X
a (b) (c) (d)
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IT Questions

I UPATI

How many folds in two neurons?
How many folds in three neurons?

Number of folds in the curve increases with the number of neurons.

_.||r"

15.0 - 15.0 - 44
E-

12.5 - 12.5 A
54 21

10.0 - 44 10.0 A

7.5 - >, > 751 > 0

5.0 1 2 - 5.0 4 -2

2.5+ 1 - 2.5 1 —4 1

0.0 A 0 - 0.0 -

—;LD —|5 [EI 5I 1ID —fllD —I5 (I] 113 llﬂ —Ill[] —|5 [I} _;: lI{} —;lD —l5 (I] l:': 1ID
(a) (b) (c) (d)
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TIRUPATI

Consider the graph fyn(x) which has folds along H
hyperplanes defined linear functions Aljx + b1j =

0,x € R",j =1,2,...,H. Then the number of linear

pieces of fyy is
N
— 2 (H

n=0
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UATs

e 1980s: UATs attempted to extend Kolmogorov-
Arnold Representations

 Continuous functions can be arbitrarily
approximated using NNs with two hidden layers and
monotonic activation function [Cun, Farber]

 Arbitrary functions can be approximated by one

hidden layer network with infinite number of
neurons [Miyake]
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UATs

One hidden layer with a monotone cosine activation

function can give Fourier series approximation to a
given function as its output

N/

*%* Limited to only square-integrable functions on a
compact set

The UATs are mostly t space can be approximated by fp;y .stated

using the density of the functions fyy(X) generated by NNs within a
given function space of interest

i.e. if fyny(X) is dense in a given space, then, any function in that
space is approximated by fyn

Panchatcharam
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Funahashi, Hornick et al., and Cybenko, 1989

Let X be any compact subset of R™ and o be any sigmoid activation

function, then the sum of the form
miq

fun(x) = Ay0(A1x + by) = Z 02 ;0 (A1jx T b1j)

j=1
is dense in X.

Givenany f: X = R and € > 0, there is a finite sum fyy as above for
which |f — fyn(x)| < e forall x € X.

The above theorem means that NNs with one hidden layer and sigmoid activation function can
approximate any continuous univariate function on a bounded domain with arbitrary accuracy
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TIRUPATI

Leshno et al., 1993

Let X be any compact subset of R™ and o be any sigmoid activation

function, then the sum of the form
miq

fun(x) = Ay0(A1x + by) = Z 02 ;0 (A1jx T b1j)

j=1
is dense in X iff o is not a polynomial function.

Similar theorems were developed for other activation functions such as RelU,
step, tanh, etc which are non-polynomial functions.

The above theorem means that NNs with one hidden layer and sigmoid activation function can
approximate any continuous univariate function on a bounded domain with arbitrary accuracy
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IT Universal Approximation Theorem — Depth

I UPATI

 The arbitrary depth case has attained a lot of research interest
recently, especially after the introduction of deep learning as a
separate domain in ML
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TIRUPATI

One Hidden Layer Neuron
y = ReLU(0x + 5)
y = ReLU(2x + 4)

Two Hidden Layers
y = ReLU(—0.5ReLU(2x + 4) + 5)

Three Neurons
y = ReLU(—2ReLU(—0.5ReLU(2x + 4) + 5) + 3)

We assumed width W/ = 1
ReLU or Rectified Linear Unit

0 ifx<0
x ifx>0

o(x) = max(0,x) = {
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One Hidden Layer Neuron

y = ReLU(0Ox -

Examples

Two Hidden Layers

-5) y = ReLU(—0.5ReLU(2x + 4) + 5)

y = ReLU(2x -

- 4)
Three Neurons

25

y = ReLU(—2ReLU(—0.5ReLU(2x +4) + 5) + 3)

5.2 1

5.14

> 5.0 1

4.9 4

4.8 4

3.0 4

20 A 2.5 1

2.0
= >, = 1.5
10 1
1.0

5_

5
4

15 A 3 -
2
1 0.5
0

0 0.0 4

-10 -5 0 5 10
X

(a)

Panchatcharam
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TIRUPATI

Examples

For NNs with one neuron per layer and RelLU activation function, the

output can be either
e astraightline

e piecewise linear curve with one fold
e piecewise linear curve with two folds

25 .
5.2 4
20 2.5
5.1 l
15 - 2.0
= 50 =, > 1.5+
10
4.9 - 1.01
2] 0.5 -
4.8
04 0.0
-10 -5 10 10 -5 10 -10 -5 10 -10 -5 0 5 10
X
(d)
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After two folds, can the subsequent layers add any further folds
for one neuron per layer?
If so, how?

23 5 3.0

5.2 1
20 4 4 2.5

5.1 -
15 A 3 4 2.0

> 504 > =, = 1.54

10 A 2

4.9 1.04
ly 1 0.5 -

4.8 4
0 A 0 0.0 4

=10 =5 0 5 10 =10 =5 0 5 10 =10 =5 0 5 10 =10 =5 0 5 10
(a) (b) (c) (d)
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Except for a negligible set, all functions f: R" — R cannot be
approximated by any ReLU network whose width W < n.

 Width-1 NNs can approximate only a small class of univariate functions
* The minimum width required for universal approximation should be
greater than 1.
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Issue: Finding the minimum width for universal
approximation with deep NNs.
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Lu et al., (2017)

For any Lebesgue measurable function f: R™ - Rand € >
0, there exists a network fyy width W < n + 4 with RelLU
activation function which satisfies

[1f(x) = fyn®)|dx < €

 NNs with arbitrary hidden layers and at most n + 4 number of
neurons per layer can approximate any functions in a Lebesgue
integrable space with sufficient accuracy
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Park et al., (2017)

The minimum width required for universal approximation of

Lebesgue integrable functions f: R™ - R™ is max[n + 1, m]

 the minimum width required for universal approximation in deep
NNsisn+ 1

 Width-2 NNs with a suitable activation function are also universal
approximators for continuous univariate functions.

Panchatcharam




Proof ot Universal
Approximation Theorem
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0-1 Squashing Function

Let 0: R — R be increasing, continuous and lim o(x) = 0 and

X——00

lim o(x) =1

X — 00

1
1+e™*

o(x) =

K be a compact subset of R"
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r n \

Ny = <f € C(K):f(xl'X2i°'°'xn) — zaixi
\ =0 /
For some ay, a4, ...,a,, € R

N ={f €eC(K):F =00 f,forsomefe N}

Vo

* V] is the set of all affine functions of x4, x5, ..., X,
« NV is the set of all possible node output functions in Layer 1
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i I.I'l' Notation

TIRUPATI
m \
Nis1 = {9 € C(K):g = ay +zaiFi*
i=1 )

For some ay, a4, ..., a, € R, F; € V)]
N1 =1G € C(K):G = 0 o g for some f € N1}

« N/ isthe set of all possible node output function in Layer k + 1
* N € Newa
* Ifg1,9, € Ny, thenayg + a9, + a,g, € N, forall ayg,a;,a, € R
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Let us show that o separates points in R™ in a strong sense

Let xy and x; be distinct real numbers. For each € > 0, there exist

s,t € Rsuchthato(s +txy) < eando(s+tx;) >1—c€.Ifin
addition, x, < x; and € < 1/2, then o(s + tx) < € on the interval

(—0,x0] and a(s + tx) > 1 — € on the interval [x;, o)
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Let x, and x; be distinct real numbers. For each € > 0, there exist s,t € R such that a(s + tx;) < € and

o(s +tx;) >1—e€.Ifinaddition, xy, < x; and € < 1/2, then g(s + tx) < € on the interval (—, x,] and
o(s +tx) > 1 — € on the interval [x, )

Proof [First Part]:
WLOG: € < 1. By 0-1, squashing function, there exist y,, y; € R such that

o(yo) = gand o(y1) =1 —g-

1 x0\/s\ _ (Yo
When does it have a solution? Does the condition satisfied from our
hypothesis? Can you fill the remaining proof?
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Let x, and x; be distinct real numbers. For each € > 0, there exist s,t € R such that a(s + tx;) < € and

o(s +tx;) > 1 — €. Ifin addition, xy < x; and € < 1/2, then a(s + tx) < € on the interval (—o, x,] and

o(s + tx) > 1 — € on the interval [x;, )

Proof [Second Part]:
1.
Xg < X7 and e < ~- 0 is monotone and

1
O'(S+tx0)<6<§<1—E<O'(S+tx1)

o(s + tx) is increasing. Hence the lemma
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Let us show that o separates points from closed sets using functions in N, in
strong sense. i.e, one layer is sufficient to separate points from closed sets.

Let B € K be aclosed set and xy, € K — B. For each € > 0, there
exists g € N, suchthatg > 1 —e€on B and g(xg) < €.

Using a 2-hidden-layer network, we can separate one outside point from an
entire closed set - do a “soft indicator” that is near O at xpand near 1 on B
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Let B c K be a closed set and x, € K — B. For each € > 0, there exists g € V;, suchthatg > 1 — € on B and g(x) < €.

Proof:

WLOG: € <%. letb € B= b + xo = 3f, € N; s.t. f(xg) <§andfb(x0) > 1—%

U,={x€eK:f,(x) >1—¢€}
fpis continuous = U, is open and b € U,. {Uy},cp is an open cover of the compact set B.
Therefore, 3 a finite subcover {Uy,, Up,, ..., Up,_} that covers B

By above lemma, 3s,t € R,s.t.a(s +tx) < €/N on (—o0,e)ando(s +tx) >1—€eon (1
— €, )
Define F; = a( + tfbj) = F; € N, Fj(xg) <€/Nand F; > 1—€on Up,

Define g = Z] ;, proof follows immediately.
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Let us show that two hidden layers suffice to separate disjoint closed sets, in a
sense very similar to the previous lemma.

Let A and B be disjoint closed subsets of K. Then for each e > 0
1. Ah € N3 suchthath<eonBandh>1—€eonA
2. AH e N suchthat 0 < H<eonBandl—e<H<1onA
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TIRUPATI

Let A and B be disjoint closed subsets of K. Then for each € > 0
1. 3h € Nzsuchthath<eonBandh>1—€onA
2 AHeNsuchthat0<H<eonBandl—e<H<1lonA

Proof:
WLOG: € < % Let a € A, by above lemma, 3g, € N, such thatg, > 1 — g on B and
gq(a) <§.Letga =1-g,=> 9, €N, and g, <§onBandga(a) > 1—%

U, ={x€K:g,(x) >1—¢€}
dg is continuous= U, is open. Since a € U, = {U,},ec4 is an open cover of A =>Finite
subcover for A (Why?)
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