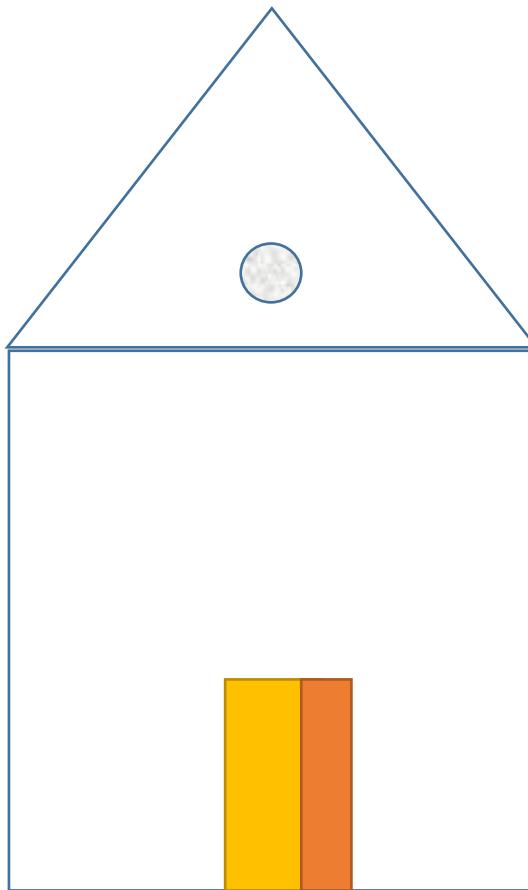


Simple Game

Draw a house on a paper

90% of people have drawn a house like



Question:

How many of your houses are
like this?

Simple Song

Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.

Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.

Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.

When the blazing sun is gone,
When he nothing shines upon,
Then you show your little light,
Twinkle, twinkle, all the night.

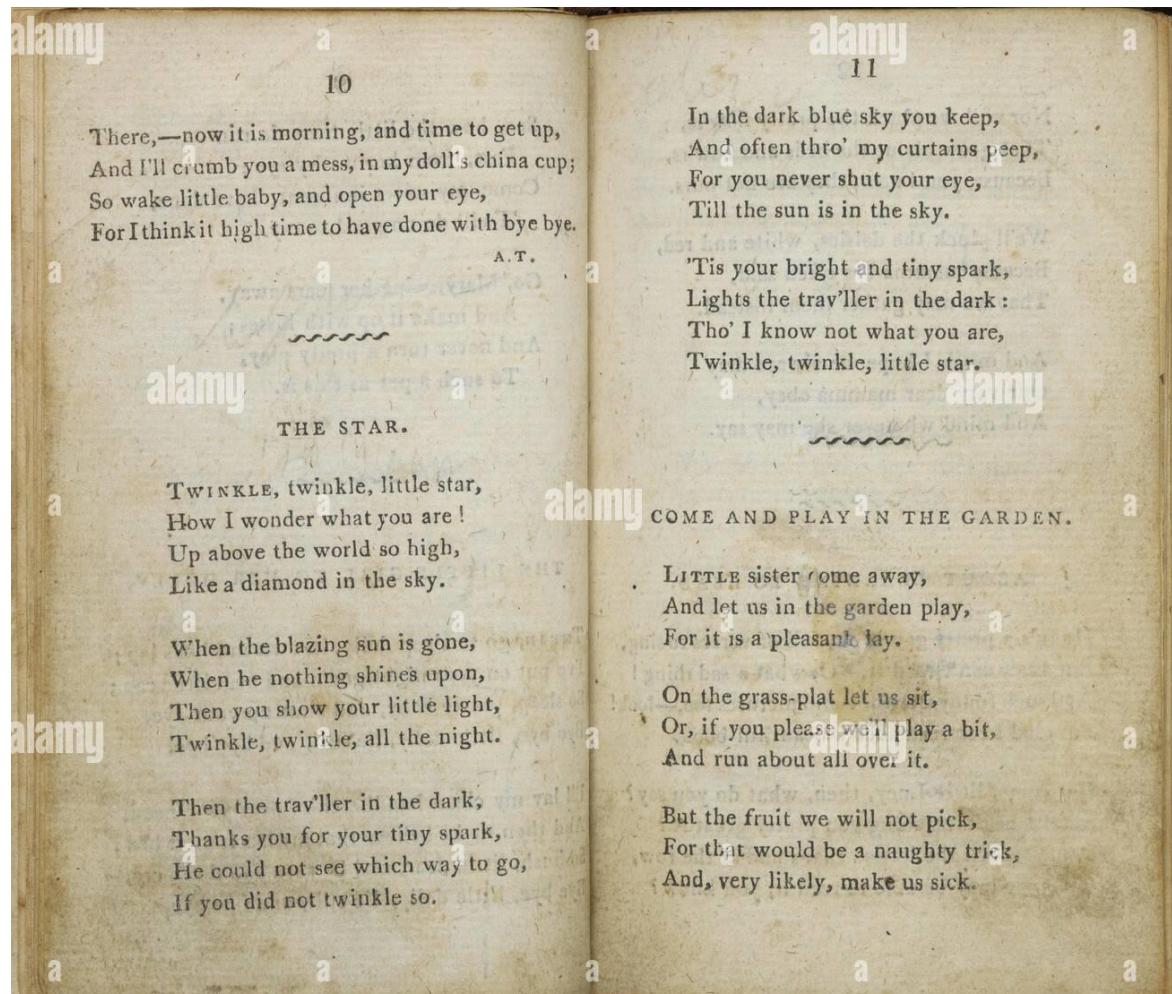
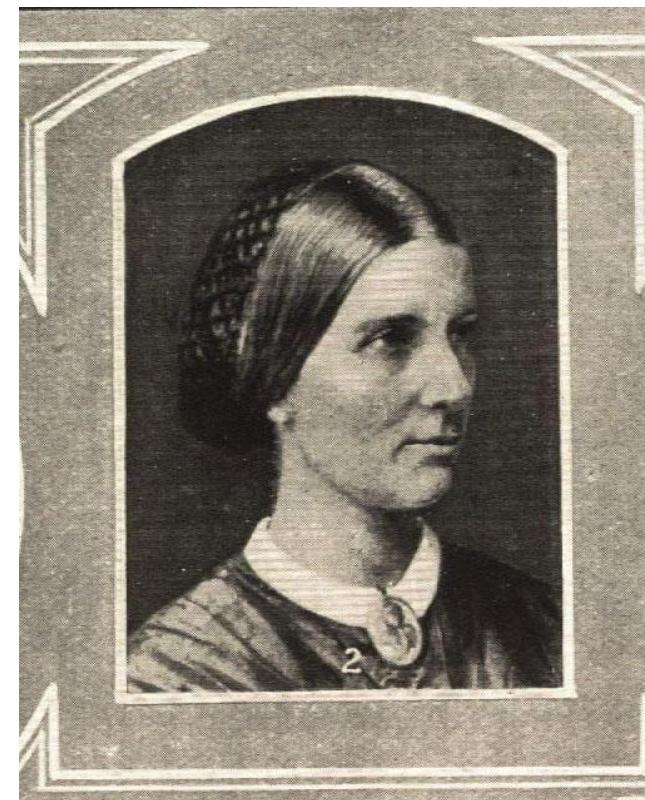
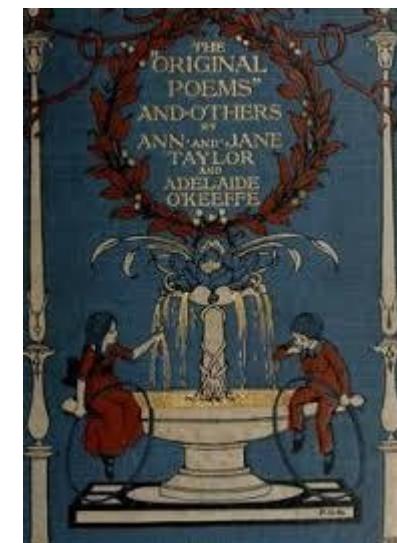
Then the traveller in the dark
Thanks you for your tiny spark;
He could not see which way to go,
If you did not twinkle so.

In the dark blue sky you keep,
And often through my curtains peep,
For you never shut your eye
Till the sun is in the sky.

As your bright and tiny spark
Lights the traveller in the dark,
Though I know not what you are,
Twinkle, twinkle, little star.

Who wrote this?

(from "The Star," Jane Taylor, 1806)



Question:

How many words were in
red/green/blue?

Another Game

Rapid Fire Round: Quiz

What does it represent?

$$A = lb$$

Rectangle

What does it represent?

$$W = mg$$

Weight = mass times gravity

What does it represent?

$$F = ma$$

Newton's Second Law

What does it represent?

$$y = mx$$

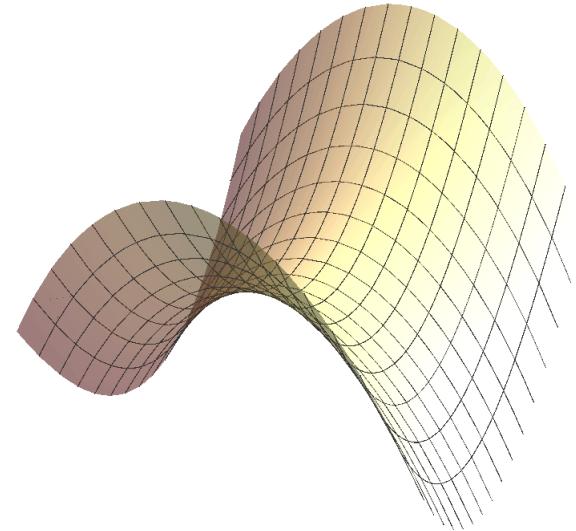
Equation of Straight Line

What does it represent?

$$z = xy$$

What does it represent?

$$z = xy$$



hyperbolic paraboloid

What does it represent?

$$A = \pi r^2$$

Area of a Circle

What does it represent?

$$E = mc^2$$

Einstein Equation

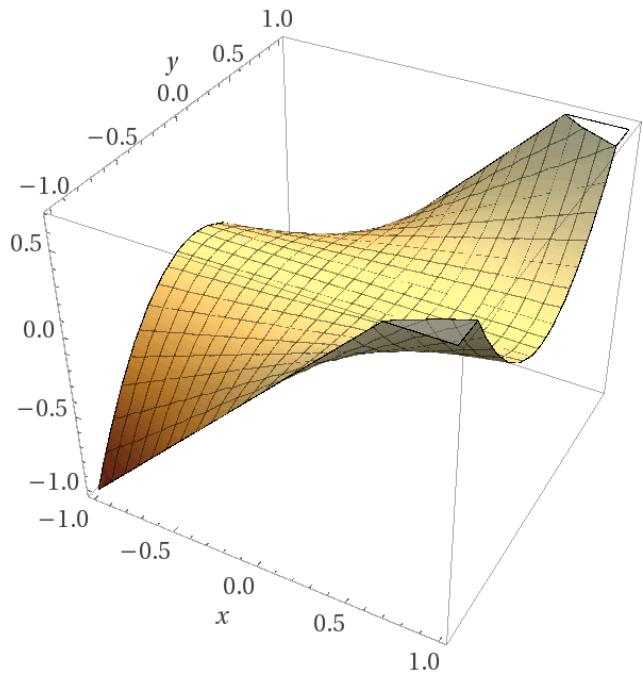
What does it represent?

$$y = ax^2$$

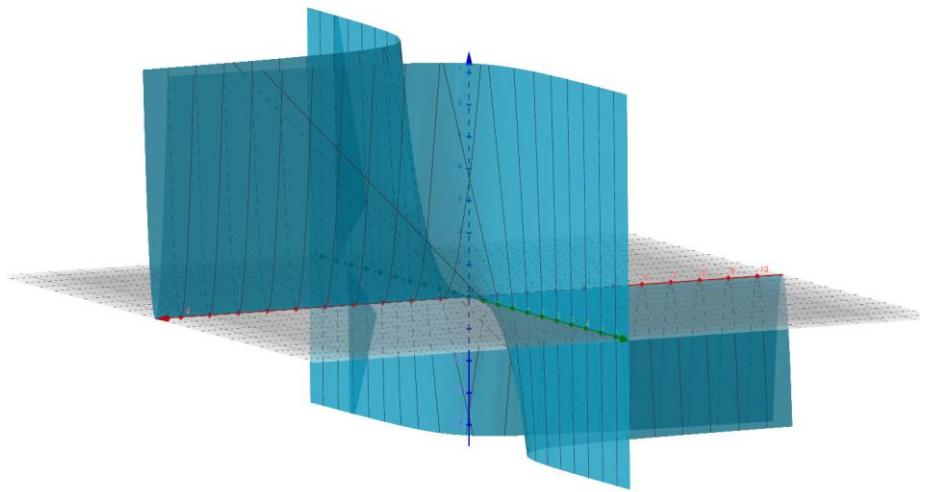
Parabola

What does it represent?

$$z = xy^2$$



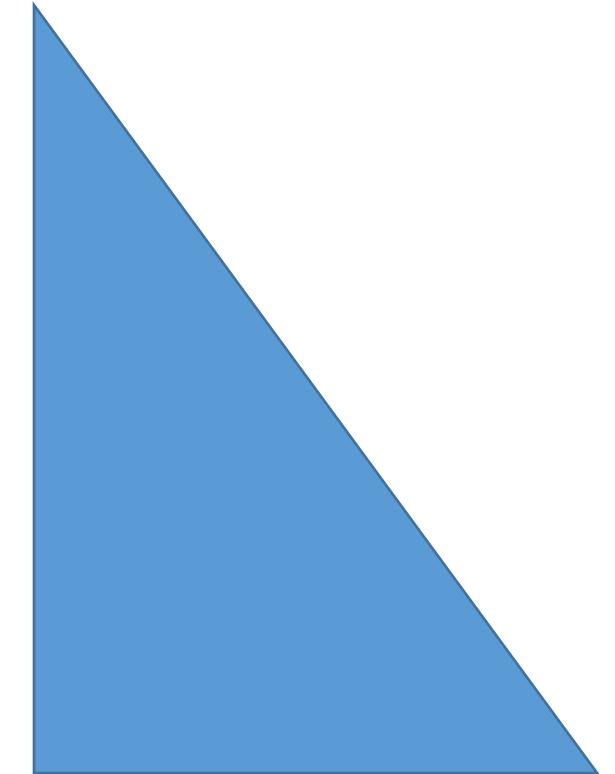
$$z = xy^2$$



What does it represent?

$$a^2 + b^2 = c^2$$

Pythagoras Theorem



What does it represent?

$$x^2 + y^2 = r^2$$

Equation of Circle

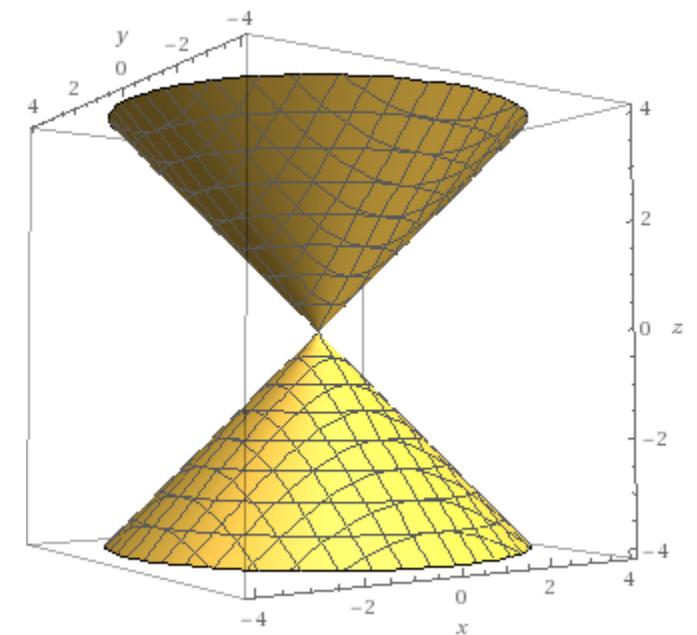
What does it represent?

$$x^2 + y^2 = z^2$$

Some 3D equation

What does it represent?

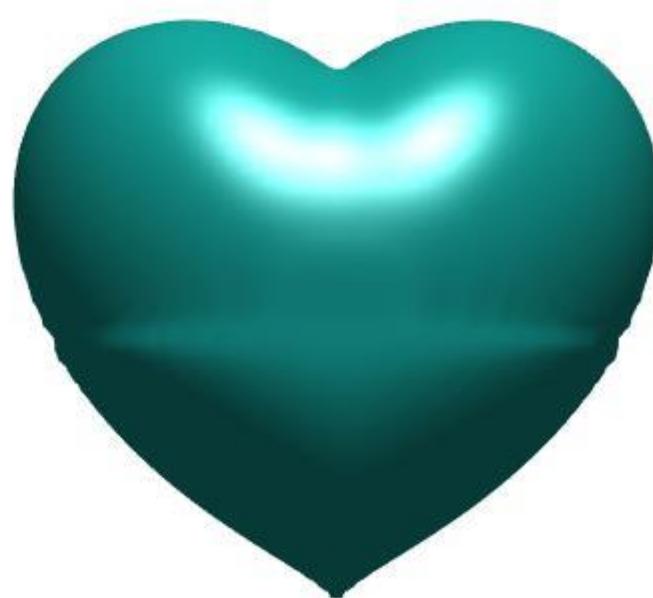
$$x^2 + y^2 = z^2$$



What does it represent?

$$\left(x^2 + \frac{9}{4}y^2 + z^2 - 1 \right)^3 - x^2z^3 - \frac{9}{80}y^2z^3 = 0$$

$$\left(x^2 + \frac{9}{4}y^2 + z^2 - 1\right)^3 - x^2z^3 - \frac{9}{80}y^2z^3 = 0$$



$$y = mx$$

$$A = lb$$

$$F = ma$$

$$W = mg$$

$$z = xy$$

$$y = ax^2$$

$$A = \pi r^2$$

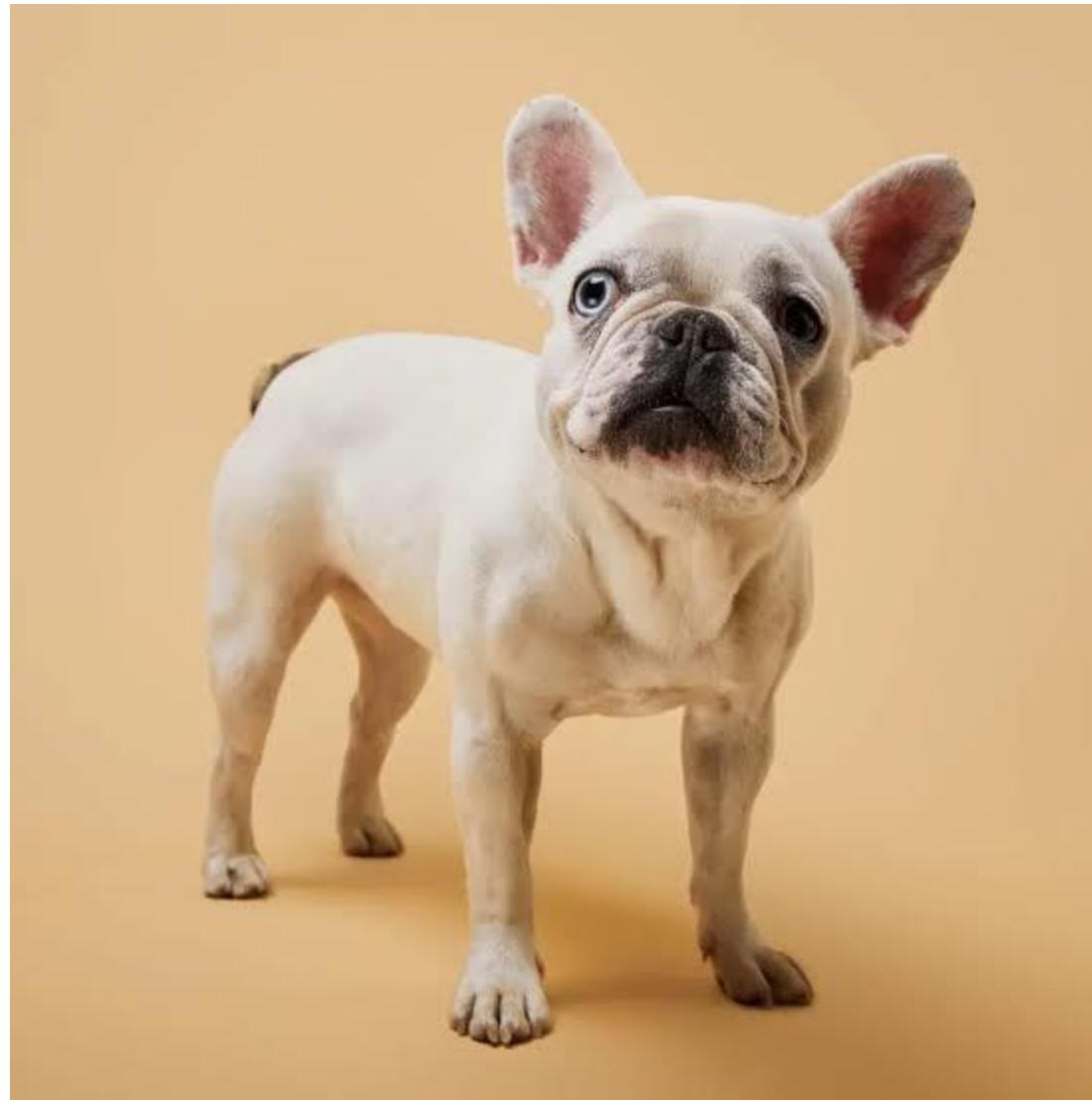
$$E = mc^2$$

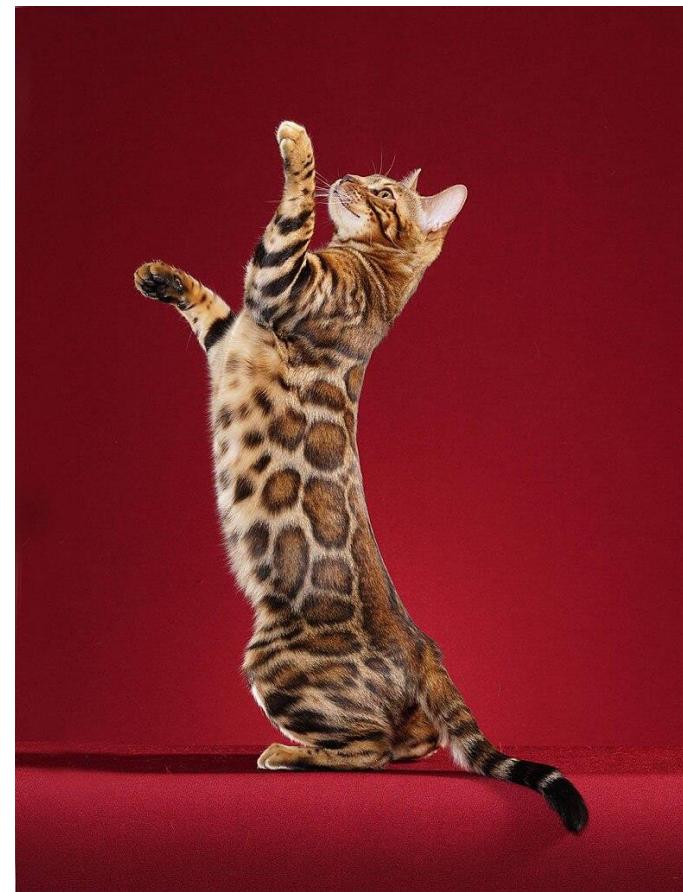
$$z = xy^2$$

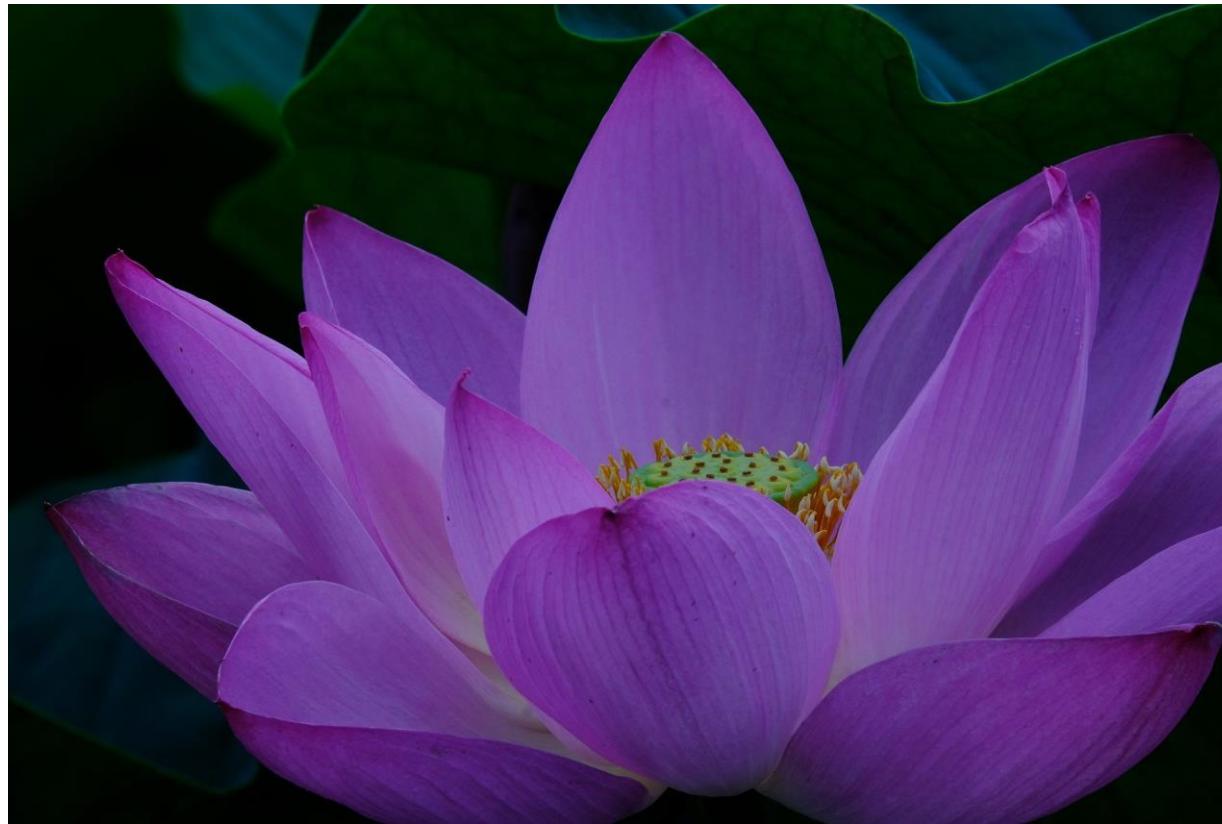
$$x^2 + y^2 = z^2$$

$$x^2 + y^2 = r^2$$

$$a^2 + b^2 = c^2$$







German Shepherd

Labrador Retriever

Rajapalayam Dog

360 Globally
Recognized Breeds

French Bulldogs

The American Eskimo Dog

73 Standardized Breeds

Approximately 400,000
Flowering Plants

Pterodactyl

Silvisaurus

Lirainosaurus

Iguanodone

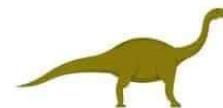
Brontosaurus

Gallimimus

Isanosaurus

Ichthyosaurus

Mosasaurus



Diplodocus

Tyrannosaurus

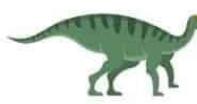
Styracosaurus

Baryonyx

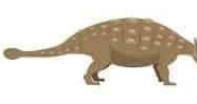
Raptor

Stegosaurus

Carnotaurus



Tsintaosaurus



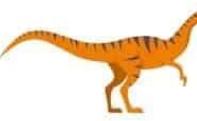
Ankilosaurus

Parasaurolophus

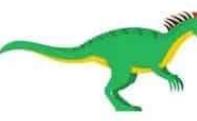


Europasaurus

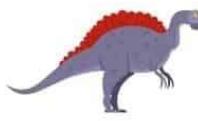
Andesaurus



Cuelophysis



Allosaurus



Spinosaurus

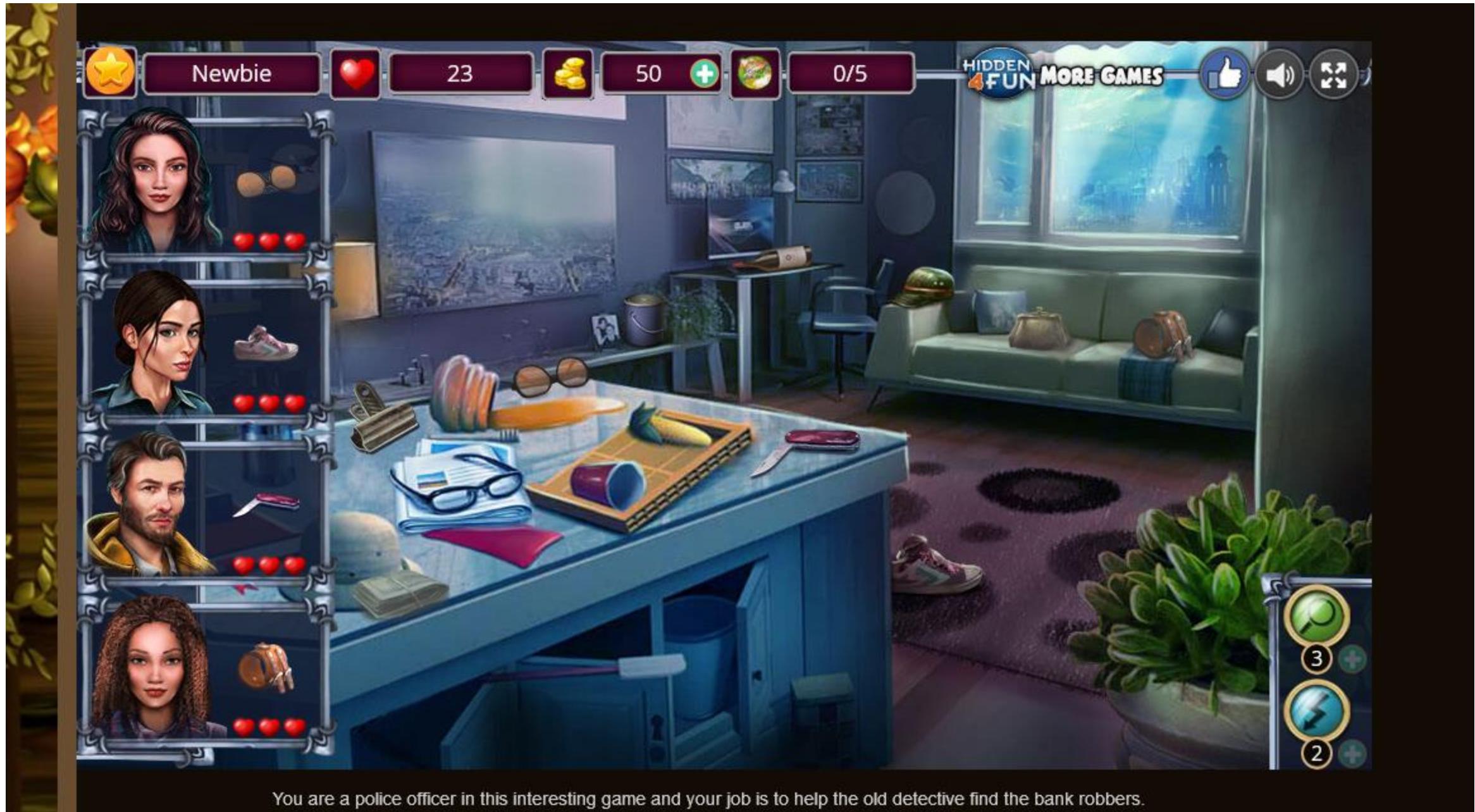


Brachiosaurus

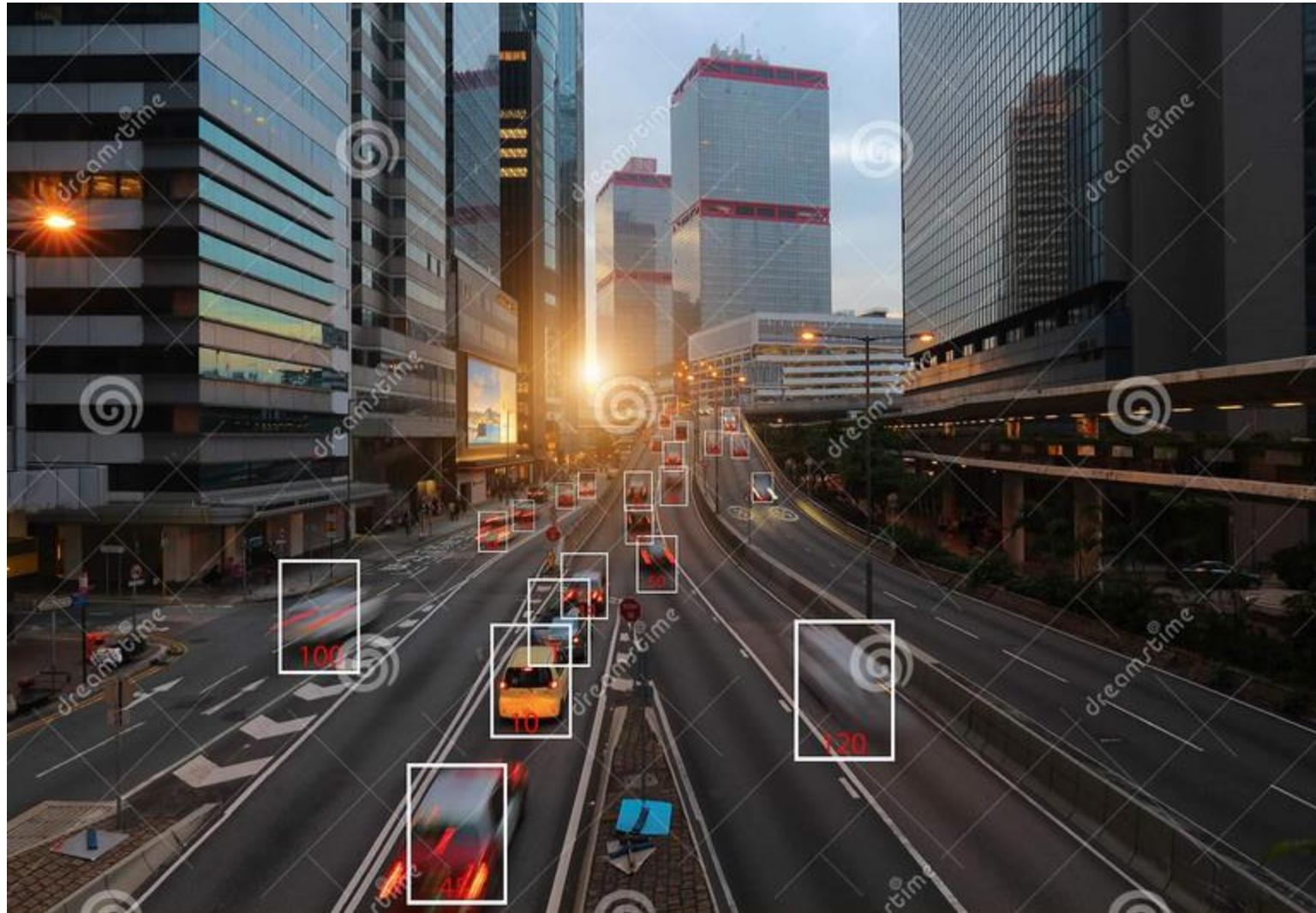
**CONGRATULATIONS! YOU HAVE
DONE THE LABELLING JOB WELL.**

I MEAN YOU ARE FIT TO LEARN MACHINE LEARNING CONCEPTS

**LET US EXPLORE MORE DETAILS WITH
MATHEMATICS**



You are a police officer in this interesting game and your job is to help the old detective find the bank robbers.



Hard question to answer. Let us give a fuzzy answer at a enough high level of abstraction

- 1. Algorithms that solve some kind of inference problems**
- 2. Models for datasets**

Does the image have only books?

Statistical Inference

Statistical inference is the process of using data analysis to deduce properties of an underlying probability distribution.

Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates.

Does the image have only books?

What does a ML algorithm do?

Machine learning algorithms are not algorithms for performing inference. Rather, they are algorithms for building inference algorithms from examples. An inference algorithm takes a piece of data and outputs a decision (or a probability distribution over the decision space).

Second type of problem associated to ML

“Given a dataset how I can succinctly describe it (in a quantitative, mathematical manner”

Example: Regression Analysis

Geometric Models:

The general problem is that we have example data points

$$x_1, x_2, \dots, x_n \in \mathbb{R}^D$$

We want to find some kind of geometric structure that (approximately) describes them.

Probabilistic Models:

The basic task here is to find a probability distribution that describes the dataset $\{x_n\}$

Classification:
From data to
discrete classes

Regression:
predict a numeric
value

Ranking:
comparing items

Collaborative
Filtering:
Recommendation

Spam Filtering

Object
Detection

Weather
Prediction
(rain, snow)

Stock Market

Weather
Prediction
(Temperature)

Web Search

Find Similar
images

Clustering:
discovers structure
in data

- Cluster Point or images
- Cluster web search

Embedding:
Visualize data

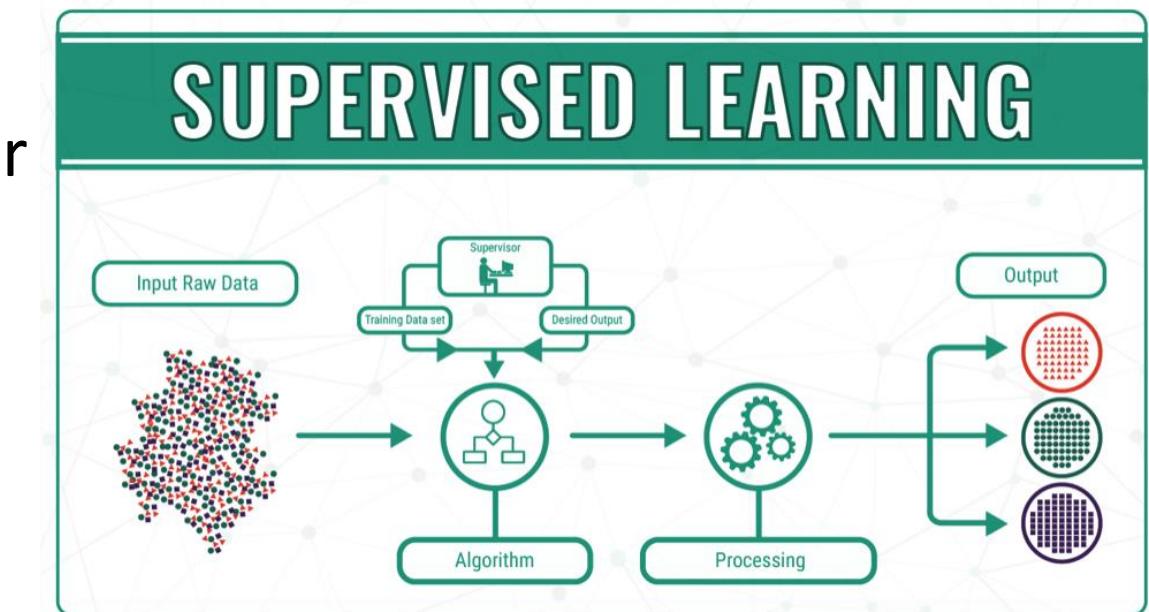
- Images words

**Structured
Prediction:** from
data to discrete
classes

- Speech Recognition
- NLP

Supervised Learning

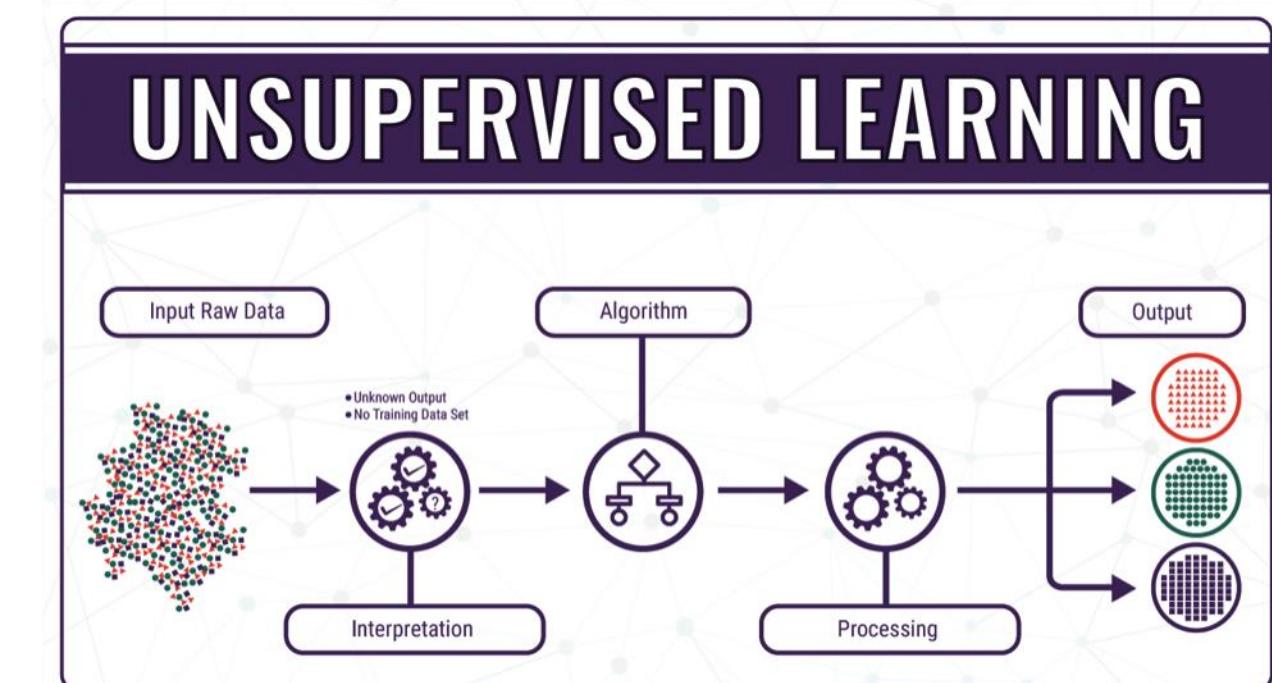
- Builds a Mathematical Model
- Contains input and output data: Training Data
- Relations : Supervisor Signals, $F(x)$
- Each training example: Array or Vector
- Training Data: Matrix
- Iterative optimization



Source: [Educative.io](https://www.educative.io/edpresso/what-is-supervised-learning)

Unsupervised Learning

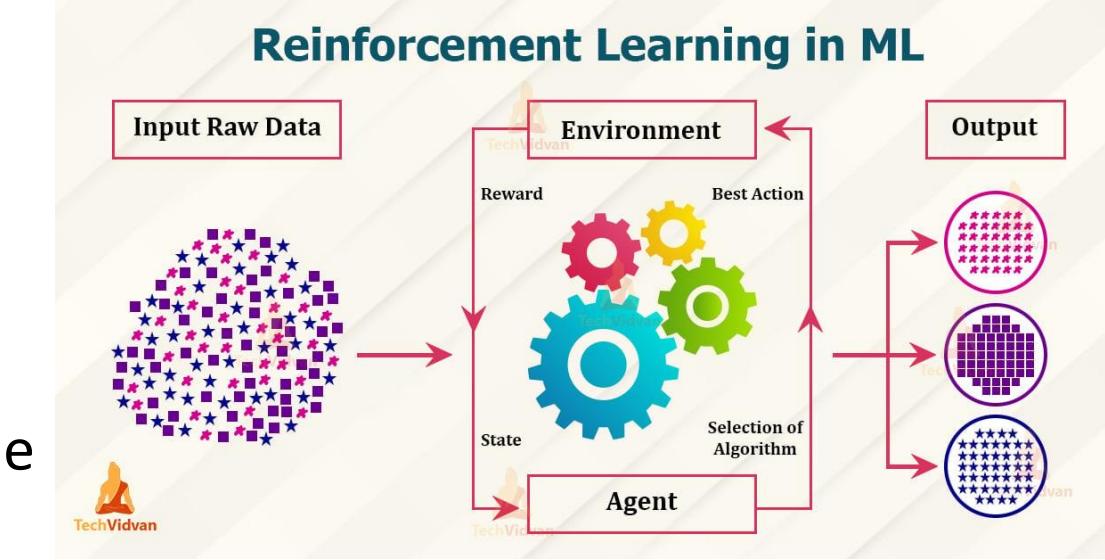
- Takes only input
- Finds the structure in the data
- Groups/Clustering data
- Classifies
- React based on the presence of such commonalities in each new piece of data
- Statistical analysis (density estimation function)
- Weighted to finding probabilities of outcomes (conditional probability)



Source: tecnative.io

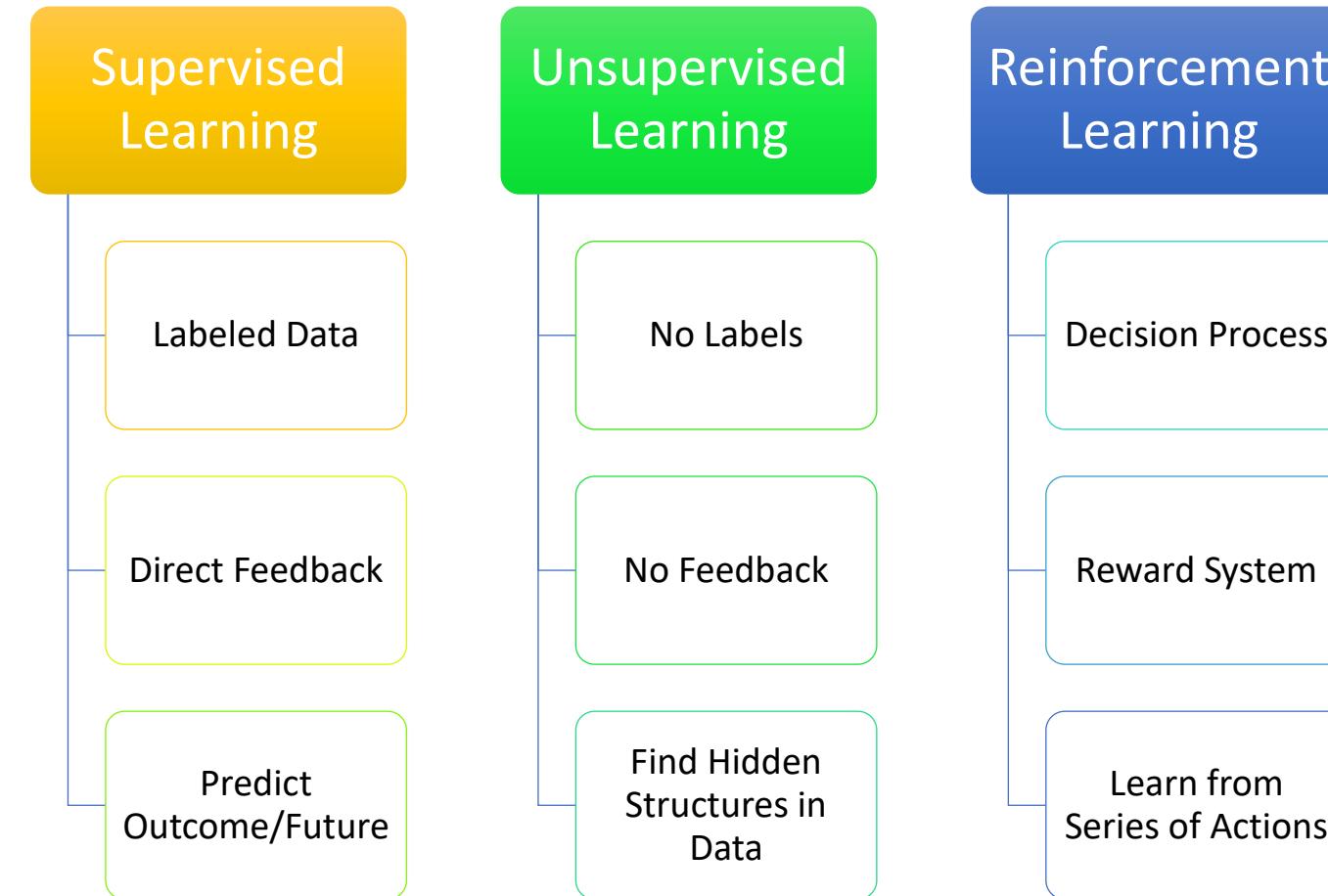
Reinforcement Learning

- Give rewards for every positive result and make based on an algorithm
- **Agent-Based Learning:** Learns by interacting with the environment
- **Trial-and-Error:** Receives rewards or penalties for actions
- **Objective:** Maximize cumulative rewards over time
- **Decision Process:** Uses **Markov Decision Process (MDP)** framework
- **Exploration vs. Exploitation:** Balances between trying new actions and using learned knowledge
- **Optimization:** Iterative improvement of policies (e.g., **Q-learning, Policy Gradient** methods)



Source: <https://techvidvan.com/>

Three Different Types of ML



Mathematics for Machine Learning

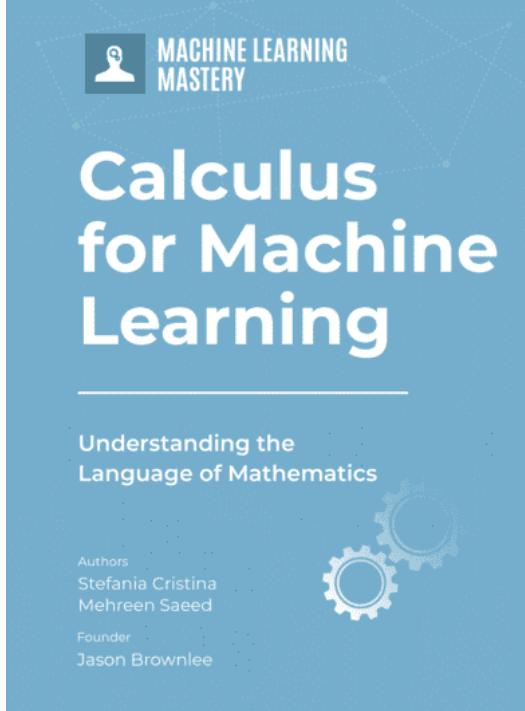
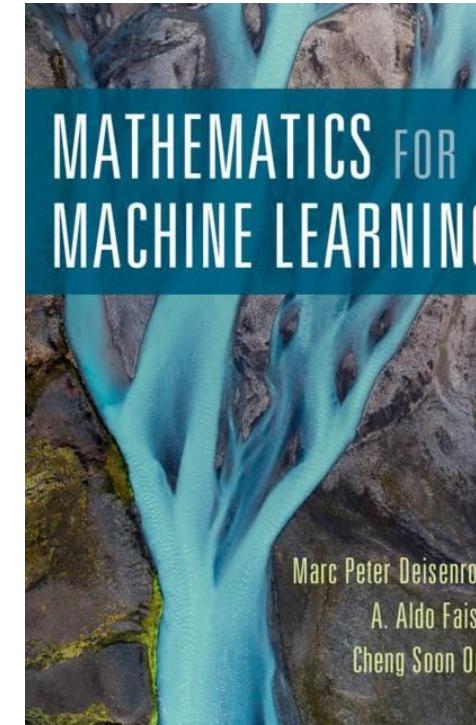
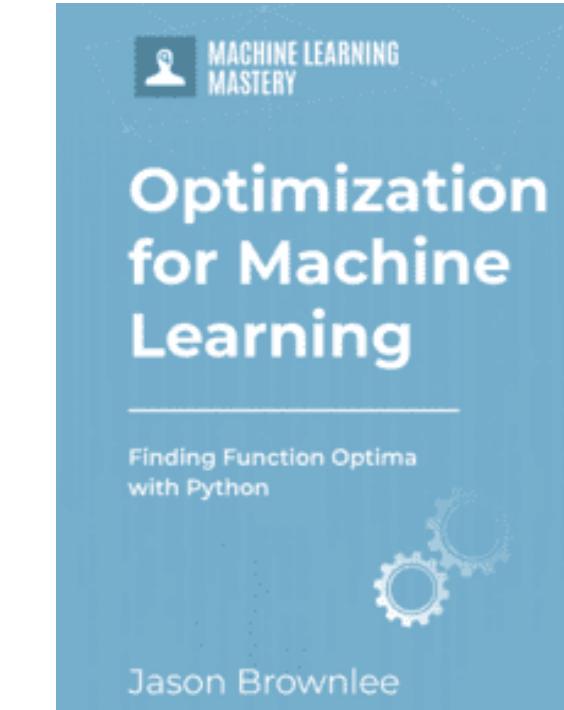
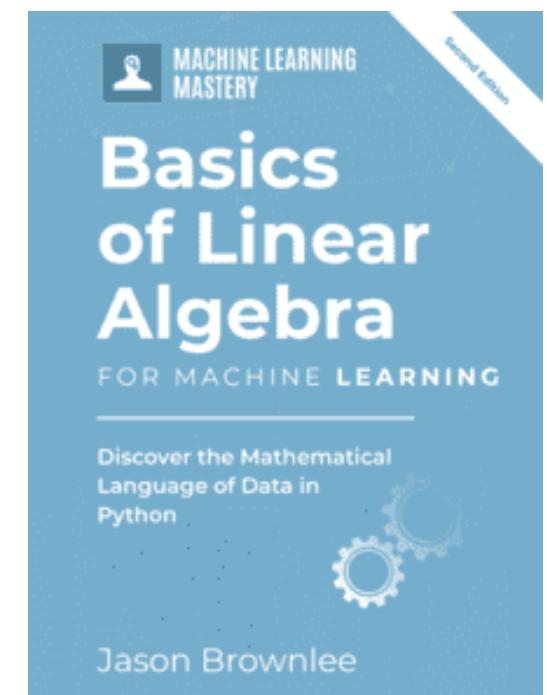
Panchatcharam Mariappan

Associate Professor

**Department of Mathematics and Statistics,
IIT Tirupati**

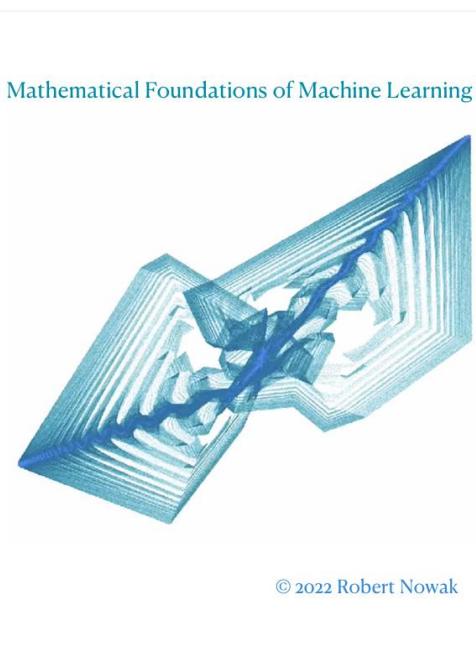
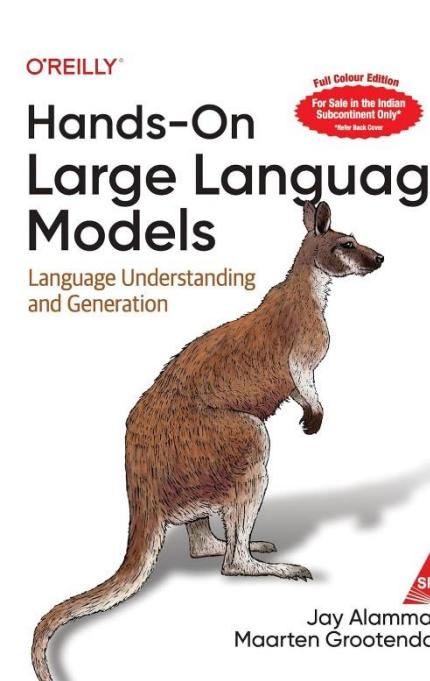
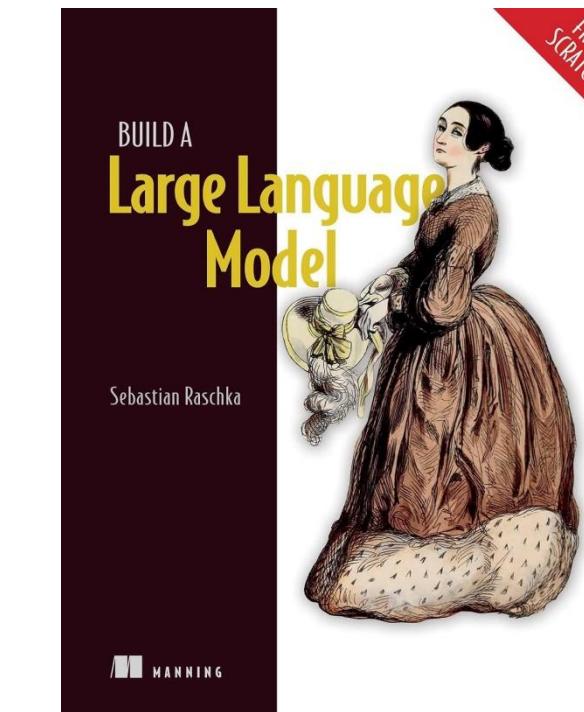
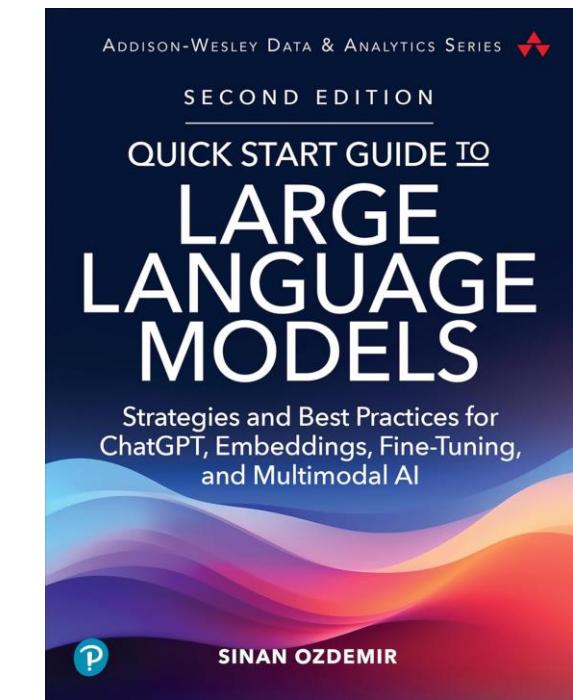
Books (<https://machinelearningmastery.com/products/>)

- S. Cristina, M. Saeed, Calculus For Machine Learning, Machine Learning Mastery
- M. P. Deisenorth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning
- J. Brownlee, Optimization for Machine Learning
- J. Brownlee, Basics of Linear Algebra for Machine Learning



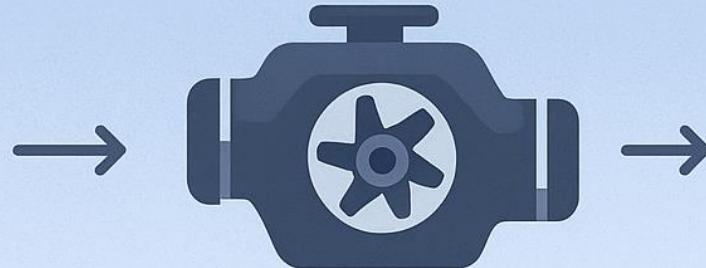
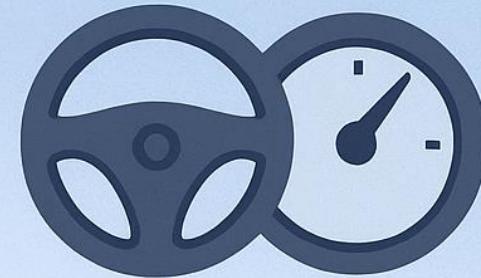
Books (<https://machinelearningmastery.com/products/>)

- Robert Nowak, Mathematical Foundations of Machine Learning
- T. Xiao and J. Zhu, Foundations of Large Language Models, <http://arxiv.org/abs/2501.09223v1>
- Seongjai Kim, Mathematical Foundations of Machine Learning, Lecture Notes
- Justing Romberg, Mathematical Foundations of Machine Learning, Lecture Notes



If Data is the fuel of AI, Linear
Algebra is its Engine and
Vector Calculus is the
Navigation/Control System

Data, Linear Algebra, and Vector Calculus: AI's Powertrain



Data: AI's Fuel

Raw information
powering the system

Linear Algebra: AI's Engine

Vectors, matrices,
embeddings,
transformations

Vector Calculus: AI's Navigation

Guides learning,
optimization, and
information flow

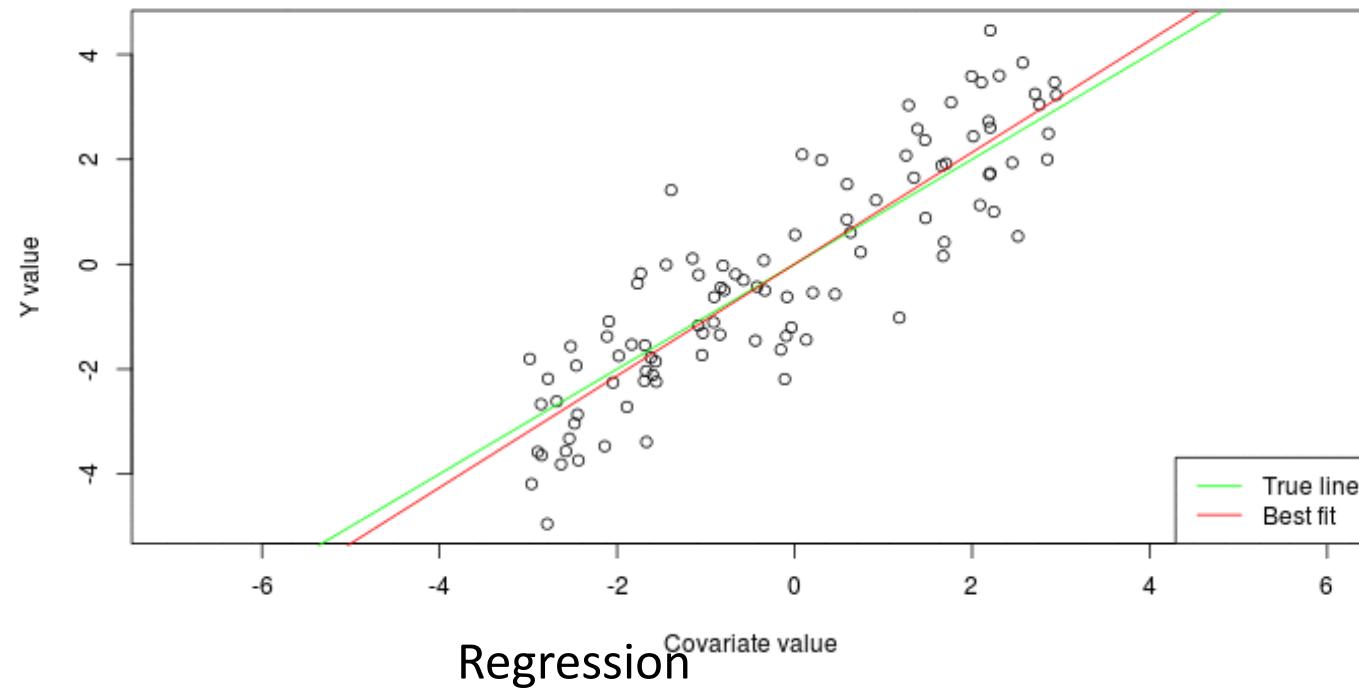
Linear Algebra moves the AI; Vector Calculus tells it where
and how to move efficiently.

Machine Learning in Mathematical Way

⌚ **Assumption:** Given a data set $\{(x_i, y_i)\}$, \exists a relation $f: X \rightarrow Y$

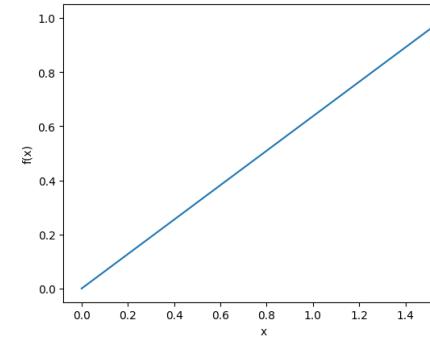
⌚ **Supervised Learning:**

- Given: Training Set $\{(x_i, y_i) | i = 1, 2, \dots, N\}$
- Find: $\hat{f}: X \rightarrow Y$ a good approximation to f

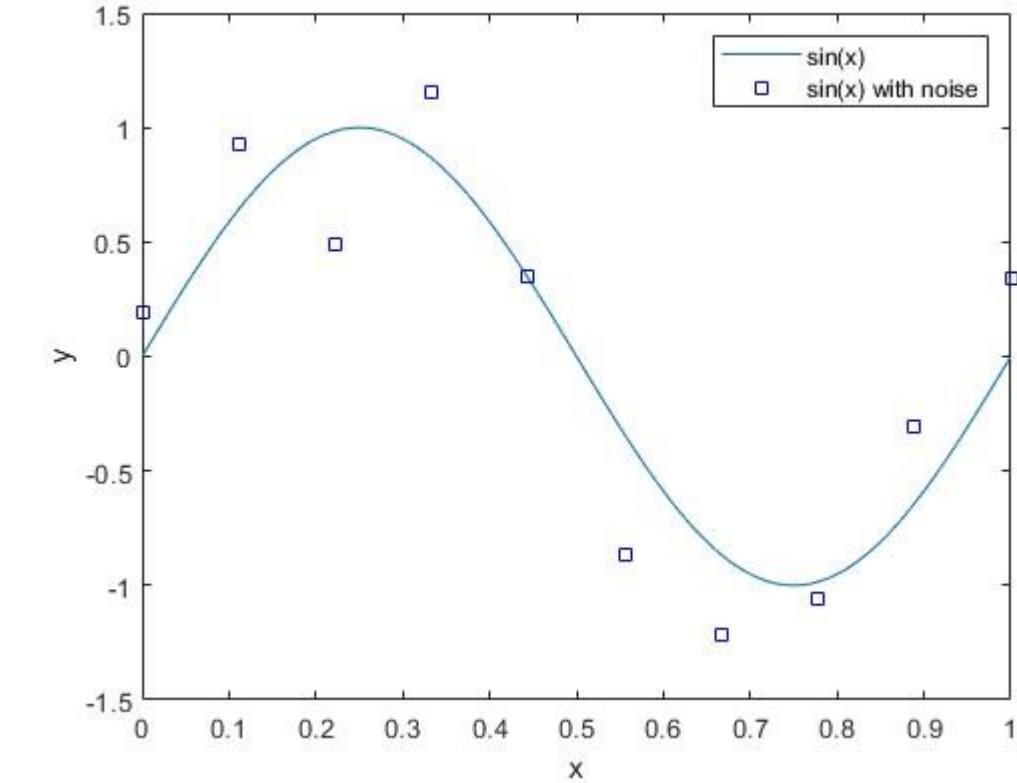


➤ Girls vs Boys

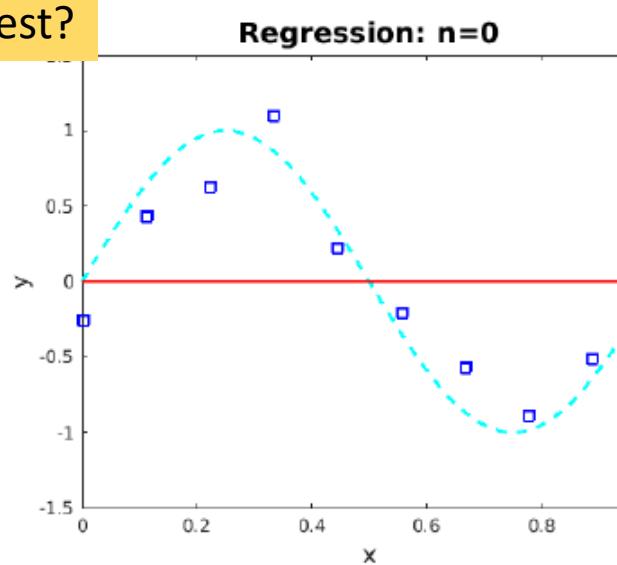
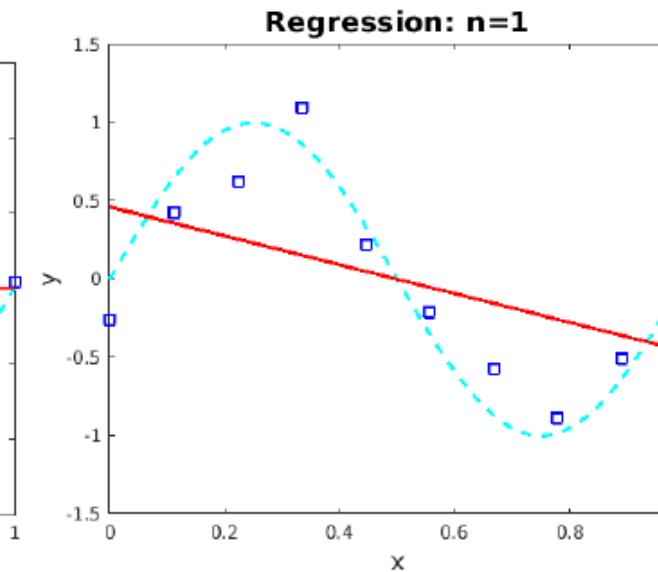
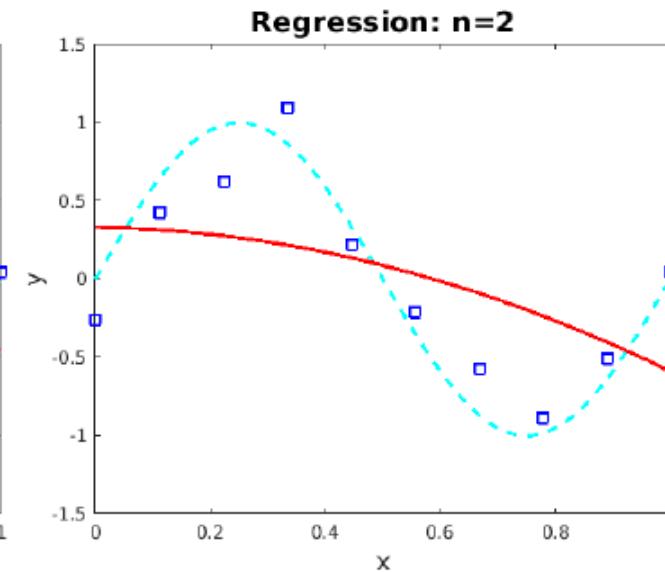
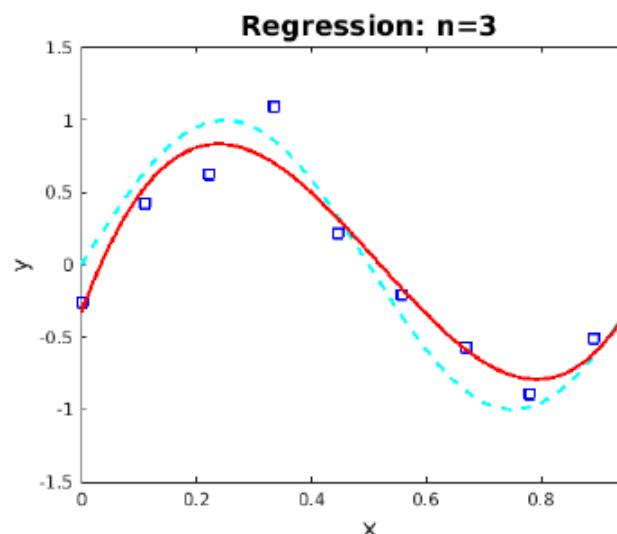
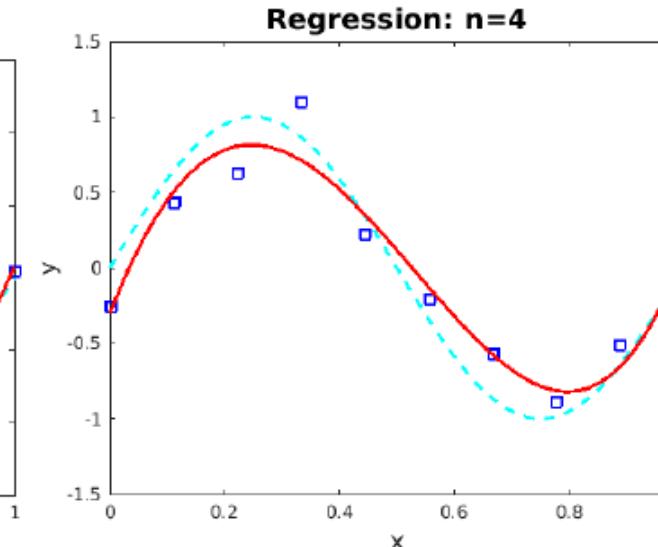
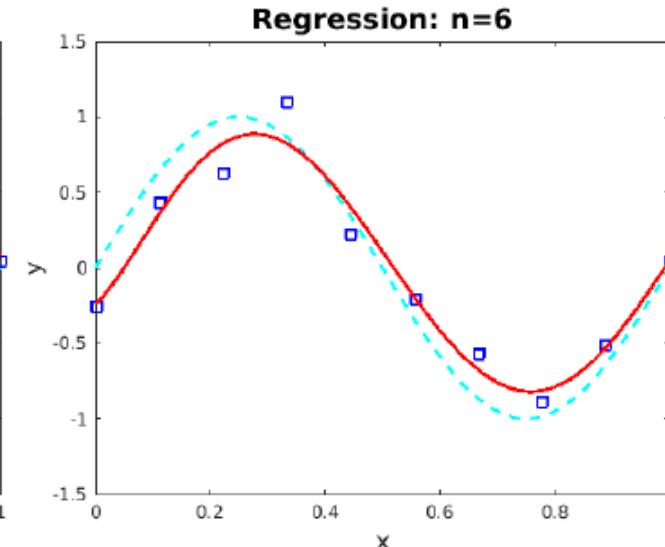
x	0	$\frac{\pi}{2}$
$f(x)$	0	1



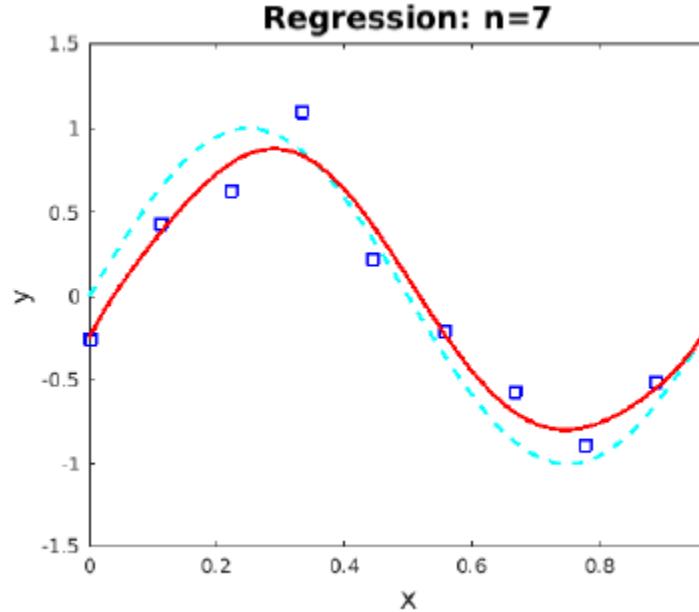
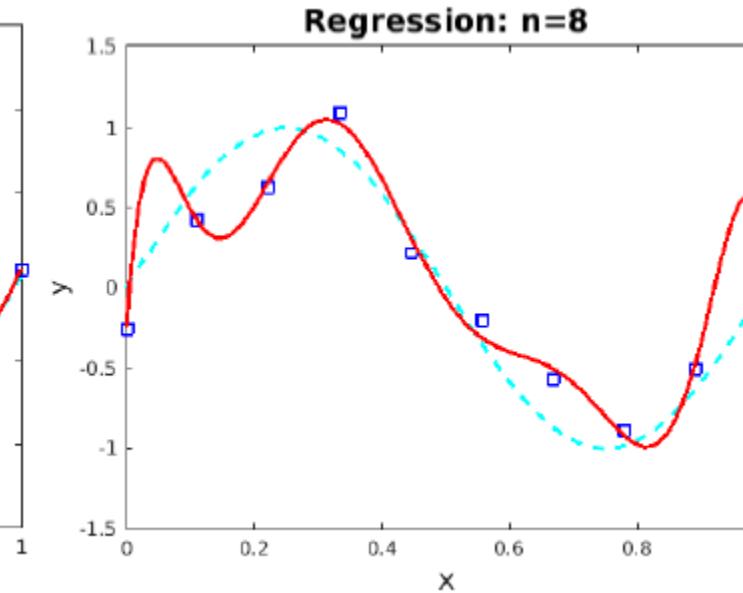
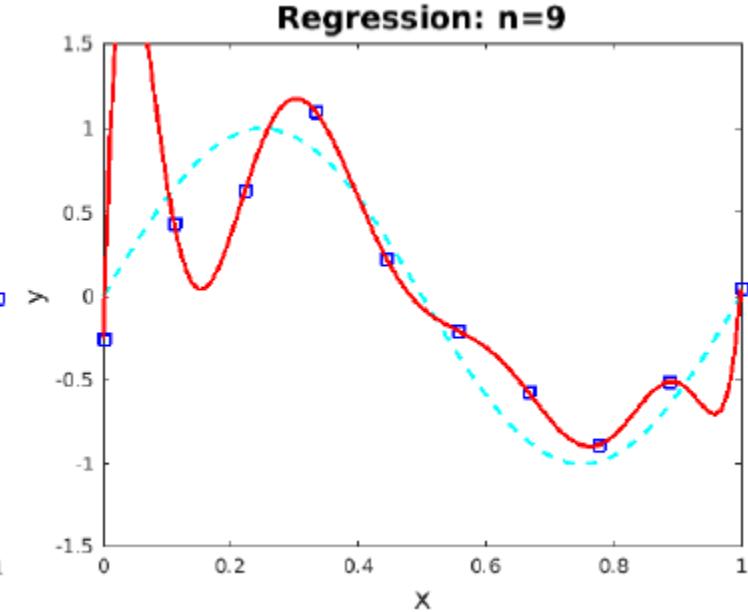
Consider 10 points generated from a sine function with noise



Which is Best?



Which is Best?



How do you measure it?

Given several models with similar explanatory ability, the simplest is most likely to be the best choice

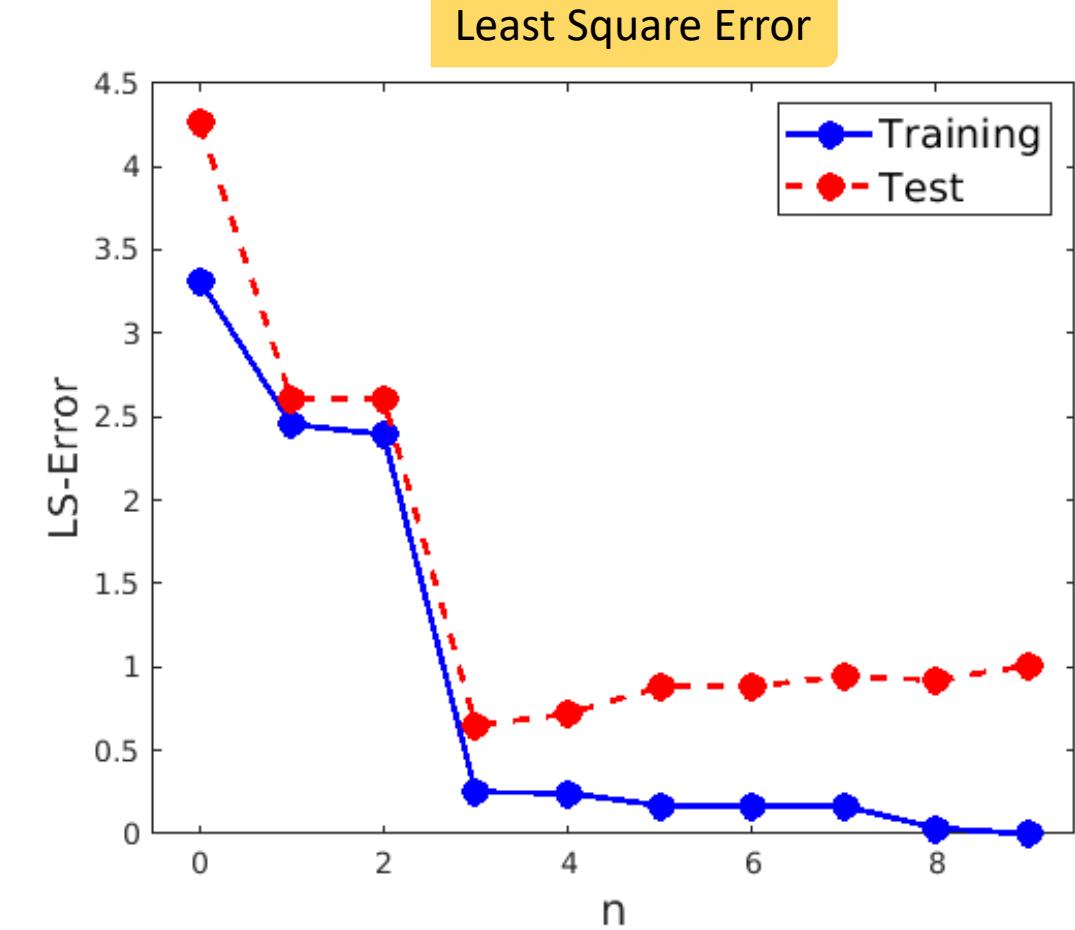
Least Square Error or SSE

Given a dataset $\{(x_i, y_i) | i = 1, 2, \dots, m\}$ and the model P_n , define the LS Error as

$$E_n = \sum_{i=1}^m (y_i - P_n(x_i))^2$$

It is also called the mean square error if we divide it by the sample size.

The best choice is P_3



Law of Parsimony

One should not increase, beyond what is necessary, the number of entities required to explain anything

- When many solutions are available for a given problem, we should select the simplest one
- What do you mean by simple?
 - ❑ Use prior knowledge of the problem to solve to define what is a simple solution.

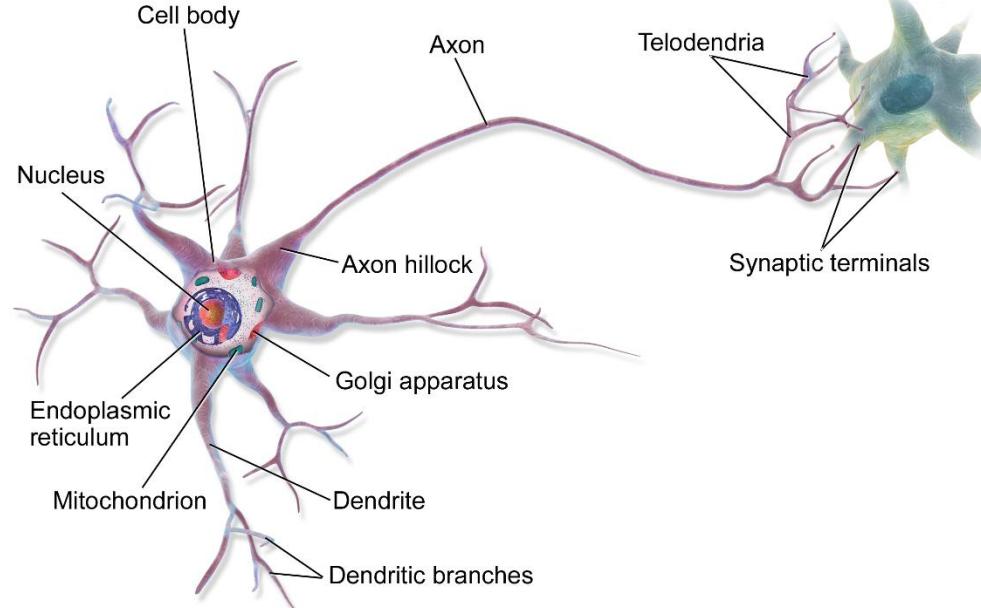
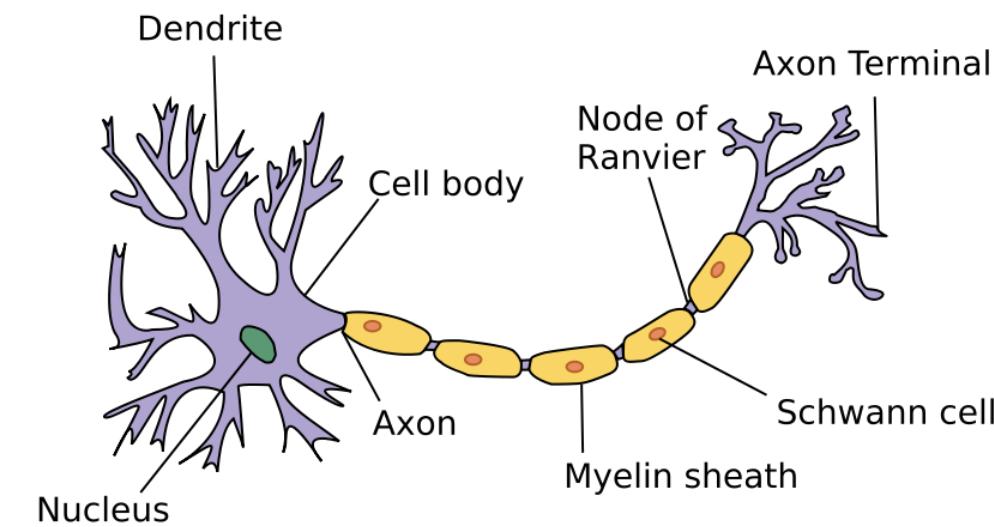
Binary Classifiers

Binary Classifier

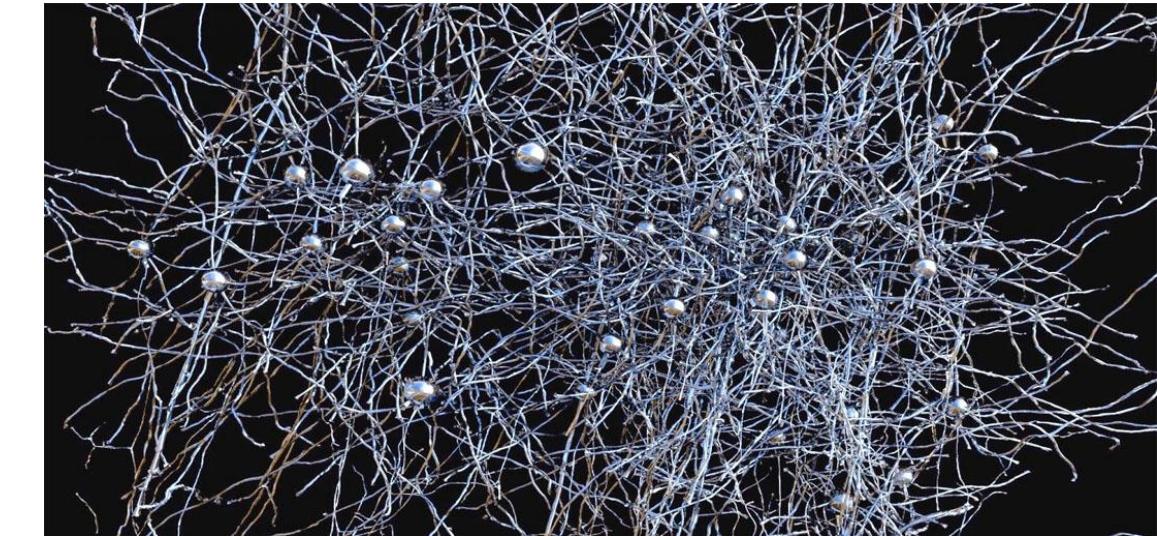
A function which can decide whether given input vector belongs to some specific class or not.

- It refers to those classification tasks that have two class labels
- A type of linear classifier
- A classification algorithm that makes its prediction based on a linear predictor function combining a set of weights with the feature vector
- Linear classifiers are artificial neurons

Human Brain: Mystique and Mystery



Human Brain: Mystique and Mystery



Linear Classifier

As artificial neurons, Linear classifiers have the following characteristics

Inputs

Feature Values x

Weight

Each Feature has
a weight
 w

Activation
Function

Weighted sum

$$\phi_w(x) = \sum_j w_j x_j = w^T x$$

Decision/Output

Class 1, if
 $\phi_w(x) > 0$

Class 2, if
 $\phi_w(x) < 0$

Perceptron

Invented by Frank Rosenblatt (1957), Built on work of Hebb (1949), Improved by Widrow-Hoff (1960),
Learning Methods for two-layer neural networks (1970)

Perceptron

Inputs

$$x = (x_1, x_2, \dots, x_n)^T$$

Weight Vector

$$w = (w_1, w, \dots, w_n)^T$$

Net Input

$$z = \sum_j w_j x_j = w^T x$$

Activation Function

$$\phi(z) = 1 \text{ if } z \geq \theta$$

θ is a threshold

$$\phi(z) = -1 \text{ otherwise}$$

A perceptron is a linear classifier that decides between two classes by drawing a straight line (or hyperplane) to separate them.

Perceptron

Inputs

$$x = (1, x_1, x_2, \dots, x_n)^T$$

Weight Vector

$$w = (w_0, w_1, w_2, \dots, w_n)^T$$

Net Input

$$z = w_0 + \sum_j w_j x_j = w^T x$$

Activation Function

$$\phi(z) = 1 \quad \text{if } z \geq 0$$

$$\phi(z) = -1 \quad \text{otherwise}$$

$$w_0 = -\theta, \text{ called bias in ML}$$

$$z = w_0 + \sum_j w_j x_j = w^T x$$

Let us take $n = 1$ and see, $z = w_0 + w_1 x_1 \Rightarrow y = ax + b$

The equation $z = w^T x$ represents a hyperplane in \mathbb{R}^n , whereas w_0 decides the intercept

What is unknown here?

1. Initialize weights to 0 or small random numbers
2. For each training sample x^i
 - a) Find the output value $y^i = \phi(z^i)$
 - b) Update the weights

$$w = w + \Delta w, \Delta w = \eta(y^i - \bar{y}^i)x^i$$

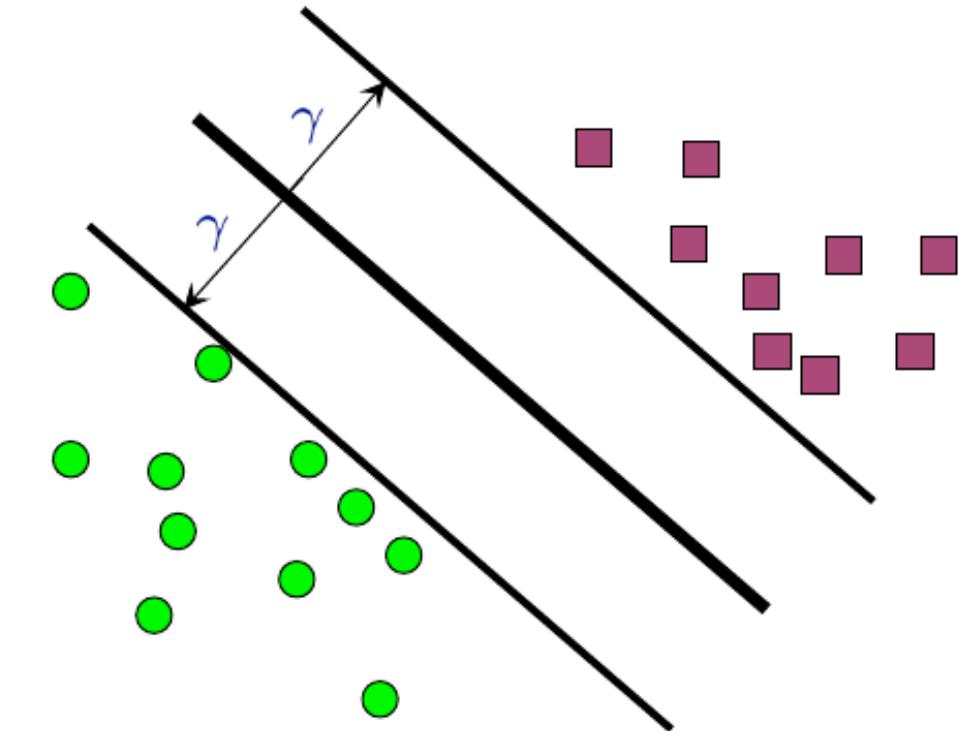
η is the learning rate, $0 < \eta < 1$,
 y^i is the true class label of the i^{th} training sample,
 \bar{y}^i is the predicted class label of the i^{th} training sample

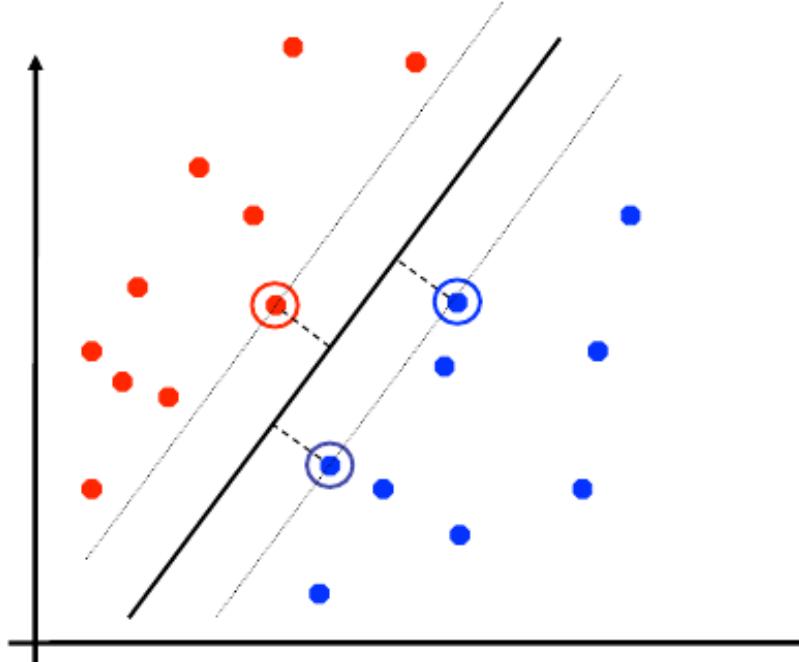
What will be Δw ?

1. If prediction is correct
2. What will be it if the prediction is wrong

A dataset $\{(x^i, y^i)\}$ is linearly separable if there exists \hat{w} and γ such that
 $y^i \hat{w}^T x^i \geq \gamma > 0, \forall i$
where γ is called the margin

Let X and Y be two sets of points in an \mathbb{R}^n . Then X and Y are linearly separable if there exists $w \in \mathbb{R}^n$ and $k \in \mathbb{R}$ such that every point $x \in X$ satisfies $w^T x > k$ and every point $y \in Y$ satisfies $w^T y < k$



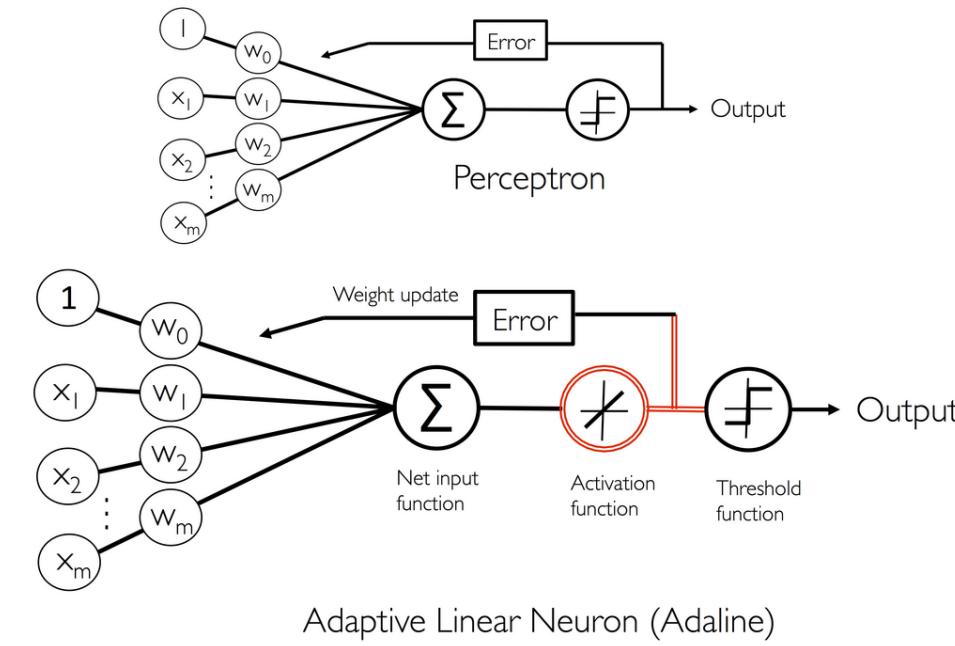


Support Vector Machine (SVM) chooses the linear separator with the largest margin.

For linearly separable training dataset

1. Perceptron always converge
2. **Separability:** Some weights get the training set perfectly correct

1. Weights are updated based on $\phi(z)$
2. Suppose $\phi(z) = z$ (Identity Function)
3. This algorithm is interested to define a cost function and minimize it
4. Continuous cost function allow the ML optimization problem to Calculus Problem



Given a dataset $\{(x^i, y^i), i = 1, 2, \dots, N\}$

Learn the weights w_i and bias $b = w_0$

Activation Function

$$\phi(z) = z$$

Cost Function (SSE)

$$\mathcal{J}(w, b) = \frac{1}{2} \sum_i (y^i - \phi(z^i))^2$$
$$z^i = w^T x^i + b$$

Dominant algorithm for the minimization of the cost function

Compute $-\nabla \mathcal{J}$ for the search direction (update direction)

$$w = w + \Delta w = w - \eta \nabla_w \mathcal{J}(w, b)$$

$$b = b + \Delta b = b - \eta \nabla_b \mathcal{J}(w, b)$$

Where $\eta > 0$ is the step length (learning rate)

$$\Delta w = -\eta \nabla_w \mathcal{J}(w, b) = \eta \sum_i (y^i - \phi(z^i)) x^i$$

$$\Delta b = -\eta \nabla_b \mathcal{J}(w, b) = \eta \sum_i (y^i - \phi(z^i))$$

$$\phi(z) = \begin{cases} 1 & \text{if } z \geq 0 \\ -1 & \text{otherwise} \end{cases}$$

$$\phi(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z}$$

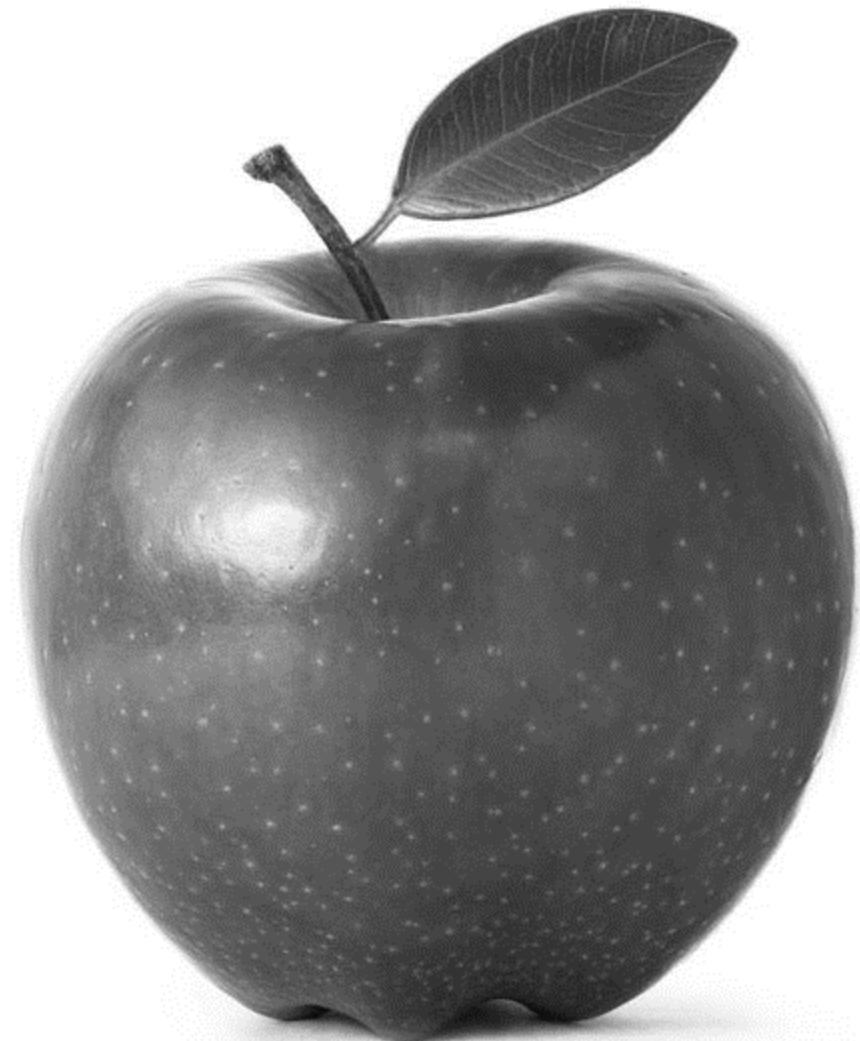
This helps to identify the probability of individual classes

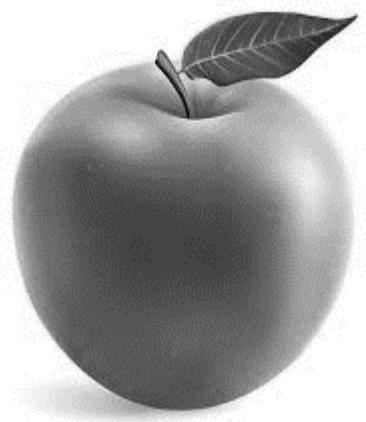


Unsupervised Learning

In unsupervised learning, we deal with unlabeled data or data of unknown structure. Using Unsupervised learning, we can explore the structure of our data to extract meaningful information without the guidance of a known outcome variable or reward function

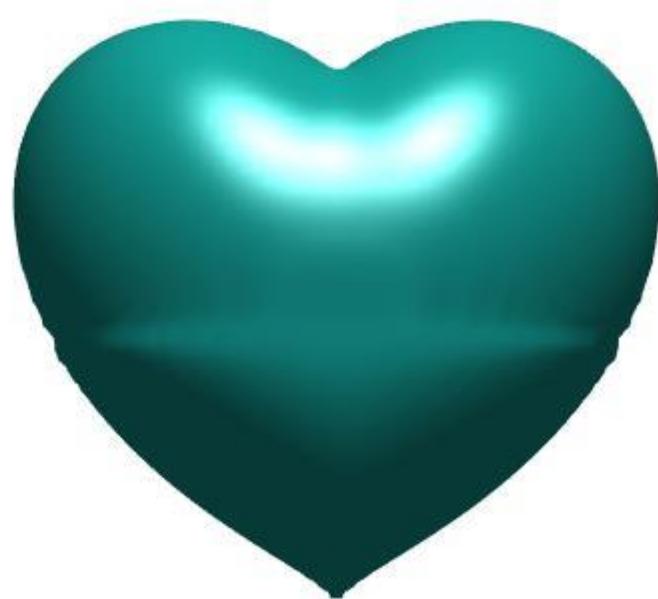
Source: Google Search, Unmanned Island





$$\left(x^2 + \frac{9}{4}y^2 + z^2 - 1\right)^3 - x^2z^3 - \frac{9}{80}y^2z^3 = 0$$

$$\left(x^2 + \frac{9}{4}y^2 + z^2 - 1\right)^3 - x^2z^3 - \frac{9}{80}y^2z^3 = 0$$



🌡 **Assumption:** Given an unlabeled dataset $\{x_i\}$,

🌡 **Unsupervised Learning:**

- Given: Training Set $\{x_i | i = 1, 2, \dots, N\}$
- Find a similar cluster or density estimation or dimensionality reduction

⚠ **Assumption:** Given an unlabeled dataset $\{x_i\}$,

$$\min_c \sum_i \sum_{c \in \mathcal{C}} \mathbb{I}(i, c) \|x_i - \mu_c\|^2$$

\mathcal{C} : set of clusters

$\mathbb{I}(i, c)$: indicator function

$$\mathbb{I}(i, c) = \begin{cases} 1 & x_i \in c \\ 0 & x_i \notin c \end{cases}$$

μ_c : Centroid of the cluster

🌡 **Assumption:** Given a unlabeled dataset $\{x_i\}$, estimate the probability distribution (MLE)

$$\hat{p}(x) = \arg \max_{p(x)} \prod_i p(x_i)$$

$p(x)$: Probability density functions of the data
Find the distribution that maximizes the MLE.

⚠ **Assumption:** Given an unlabeled dataset $x_i \in \mathbb{R}^d$, reduce to a low-dimensional space $z_i \in \mathbb{R}^k$. Principal Component Analysis (PCA) can be formulated as finding the projection

$$z_i = W^T x_i$$

$W \in \mathbb{R}^{d \times k}$ is a projection matrix that maximizes the variance in the reduced space

$$\max_W \sum_i \|W^T x_i\|^2$$

Reinforcement Learning

It is the science of decision-making combining ML and Optimal Control.

- Learning the optimal behavior in a dynamic environment - maximum reward.
- Optimal behavior is learned through interactions with the environment and observations of how it responds
- No need for labeled input/output pairs
- In the absence of a supervisor, the learner must independently discover the sequence of actions that maximize the reward.
- This discovery process is similar to a trial-and-error search.

Agent: The learner or decision maker

Environment: The external system with which the agent interacts

State (s_t): The representation of the current system in the environment at time step t

Action (a_t): The action taken by the agent at time step t

Reward (r_t): The scalar feedback received after taking action (a_t) at time step t in state s_t

Policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$, where \mathcal{S} set of all states, \mathcal{A} set of all actions

Value Function (V^π): Estimates how good a particular state

Action-Value Function (Q^π): Estimates the expected cumulative reward

Markov Decision Process

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$$

\mathcal{S} : Possible States

\mathcal{A} : Possible actions

$P(s_{t+1}|s_t, a_t)$: probability of moving from state s_t to s_{t+1} when action a_t is taken

r_t : reward function, immediate reward after taking action a_t

$\gamma \in [0,1]$: discount factor, helps to identify future rewards relative to immediate rewards

Value Function and Bellman Equation

$$V^\pi(s_t, a_t) = \mathbb{E}^\pi[r_t + \gamma V^\pi(s_{t+1})]$$

$$Q^\pi(s_t, a_t) = \mathbb{E}^\pi[r_t + \gamma Q^\pi(s_{t+1}, a_{t+1})]$$

$$V^*(s_t) = \max_{\pi} V^\pi(s_t) \text{ and } Q^*(s_t, a_t) = \max_{\pi} Q^\pi(s_t, a_t)$$

Optimal Action-Value Function

$$Q^*(s_t, a_t) = \mathbb{E}_{s_{t+1}} \left[r_t + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \right]$$

Self-supervised Learning

Self-supervised learning is a type of machine learning where a model learns from unlabeled data by creating its own supervision signal. In other words, the model generates pseudo-labels or uses part of the data to predict another part, which allows it to learn useful representations of the data without requiring human-provided labels.

🌡 **Assumption:** Given a unlabeled dataset $\{x_i\}$,

🌡 **Self-supervised Learning:**

- Given: Training Set $\{x_i | i = 1, 2, \dots, N\}$
- Define pretext task to generate a supervisory signal from the data
- Corrupted or masked input x_i^m
- Target $y_i = x_i$

- 🌡 Define $f(x)$ model (neural network) that learns the transformation of the input data xx into a useful representation.
- 🌡 Learned embedding of the input x_i

$$\mathcal{L}(\theta) = \sum_i \mathcal{L}_{task}(f(x_i^m), y_i)$$

Physics Informed Neural Network

Panchatcharam Mariappan

Associate Professor

**Department of Mathematics and Statistics,
IIT Tirupati**

- **Images → inputs**
- **Labels (“dog”, “rose”, “aeroplane”) → outputs**
- **Neural network → learns to map inputs to outputs by minimizing an error (difference between predicted and true labels).**

- **What if I don't have many labels, but I know the rules of the world — like Newton's laws, or a heat equation?**

- In supervised ML:
 - You train with data points and labels.
- In PINNs:
 - You train with data points (locations, times)
 - Instead of labels, you use physical laws (PDEs) as a *teacher*.

- In normal ML, the network learns from examples.
- In PINNs, the network learns from equations.

Concept	ML (what they already know)	PINN (new link)
Input	Image pixels	Space-time coordinates (x, y, t)
Output	Label (dog/flower)	Field value (e.g., temperature, velocity, pressure)
Learning Source	Labeled data	Physics law (e.g., Navier–Stokes, diffusion)
Loss Function	Cross-entropy / MSE with labels	PDE residuals + boundary/initial condition losses
Goal	Classify correctly	Satisfy physics and match sparse data

Stage	Theme	Concept
Stage 1	Learning from Labels	Supervised ML
Stage 2	Learning from Similarity	Unsupervised ML
Stage 3	Learning from Rules	PINN

from observing data → discovering structure → obeying laws of nature.

“When you were children, you learned to identify dogs by seeing many of them — that was data-driven learning. Later, you learned about bones, muscles, and motion — that’s physics. PINNs are like scientists — they don’t just memorize; they reason with equations.”

PINN Introduction

$$u_t = c^2 u_{xx}, x \in [0, 1], t > 0$$

- $u(x, t)$: temperature
- c^2 : thermal diffusivity
- BCs: $u(0, t) = u(1, t) = 0$
- ICs: $u(x, 0) = \sin(\pi x)$

Traditionally, we solve this with finite differences or FEM.
But what if a neural network could learn this solution?

Ordinary Neural Network	Physics Informed Neural Network
Learns from data ($x \rightarrow y$)	Learns from equations (e.g., PDEs)
Uses labeled examples	Uses physical laws
Needs lots of data	Can work with few data points
Input: Image \rightarrow Output: Label	Input: $(x, t) \rightarrow$ Output: $u(x, t)$
Loss = (prediction - label)2	Loss = (PDE residual)2 + BC/IC loss
Learns from data	Learns from Equations

🌡 **Assumption:** Given a data set $\{(x_i, y_i)\}$, \exists a relation $f: X \rightarrow Y$

🌡 **Supervised Learning:**

- Given: Training Set $\{(x_i, y_i) | i = 1, 2, \dots, N\}$
- Find: $\hat{f}: X \rightarrow Y$ a good approximation to f

Mean Square Error or SSE

Given a dataset $\{(x_i, y_i) | i = 1, 2, \dots, m\}$ and the model P_n , define the LS Error as

$$E_n = \frac{1}{m} \sum_{i=1}^m (y_i - P_n(x_i))^2$$

It is also called the mean square error (MSE)

$\hat{u}(x, t, \theta)$: Small fully-connected NN

Use Automatic Differentiation (AD)

$$f_\theta(x, t) = \frac{\partial \hat{u}}{\partial t} - c^2 \frac{\partial^2 \hat{u}}{\partial x^2}$$

Physics Loss:

$$L_{PDE} = MSE(f_\theta(x, t), 0)$$

BC Loss:

$$L_{BC} = MSE(\hat{u}(0, t), 0) + MSE(\hat{u}(1, t), 0)$$

Initial Loss:

$$L_{IC} = MSE(\hat{u}(x, 0), \sin(\pi x))$$

Total Loss:

$$L = L_{PDE} + L_{BC} + L_{IC}$$

$\hat{u}(x, t, \theta)$: Small fully-connected NN

Use Automatic Differentiation (AD)

$$f_\theta(x, t) = \frac{\partial \hat{u}}{\partial t} - c^2 \frac{\partial^2 \hat{u}}{\partial x^2}$$

Physics Loss:

$$L_{PDE} = MSE(f_\theta(x, t), 0)$$

BC Loss:

$$L_{BC} = MSE(\hat{u}(0, t), 0) + MSE(\hat{u}(1, t), 0)$$

Initial Loss:

$$L_{IC} = MSE(\hat{u}(x, 0), \sin(\pi x))$$

Total Loss:

$$L = L_{PDE} + L_{BC} + L_{IC}$$

Level	New Concept	Example
Beginner	PDE residual only	Heat equation
Intermediate	Add ICs/BCs	Wave equation
Advanced	Add measured data	Wave tank, Navier–Stokes
Research	Domain decomposition, adaptive sampling	Real 2D/3D simulations

Library	Use
PyTorch / TensorFlow	Custom PINN implementations
DeepXDE	Simplifies PINN coding for beginners
SciANN	TensorFlow-based PINN library
Modulus (NVIDIA)	For high-performance PDE PINNs (later stage)

1. SciML — Physics-Informed Neural Networks

Part of Scientific Machine Learning course lectures. [KKS32 Courses](#)

2. ETH Zurich — Deep Learning in Scientific Computing (Spring Semester 2023)

Lecture slides / applications of PINNs by Siddhartha Mishra, Ben Moseley. [ETH Zürich](#)

3. Oxford University — Physics Informed Neural Networks Course

Dept. of Computer Science, Oxford has a course page for PINNs. [Department of Computer Science](#)

4. Nature Article: [Physics-Informed Machine Learning](#)

5. Elsevier Article: [Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring](#)

6. Springer Article: [Physics-informed neural networks for PDE problems: a comprehensive review](#)

1. IITU — “DL in Applied Mathematics” (Lecture on PINN)

Includes definitions, loss function discussions, advantages/disadvantages. [IITU](#)

2. GitHub Tutorials

1. FilippoMB / Physics-Informed-Neural-Networks-tutorial (PyTorch notebook)

[GitHub](#)

2. AlirezaAfzalAghaei / PINN-tutorial (minimal PINN implementations in PyTorch)

[GitHub](#)

3. nguyenkhoa0209 / pinns_tutorial repository [GitHub](#)

3. DeepChem Tutorial

Introductory tutorial on PINNs using JAX / other tools on DeepChem site.

[DeepChem](#)

4. MATHEMATICAL LAB / PINA Tutorial

Tutorial on multiscale PDEs using Fourier-Feature Networks with PINNs [MathLab](#)

- 1. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations**
<https://www.sciencedirect.com/science/article/pii/S0021999118307125>
<https://github.com/maziarraissi/PINNs>
- 2. SciML: Open Source Software for Scientific Machine Learning** <https://sciml.ai/>

A Few Fundamentals

This Part of the lecture is based on the paper

1. [A Survey on Universal Approximation Theorems, Midhun T. Augustine, 2024](#)
2. [An elementary proof of a universal approximation theorem, Chris Monico, 2024](#)
3. [A visual proof that neural nets can compute any function](#)
4. [Approximation by superpositions of a sigmoidal function](#)
5. [Universality of deep convolutional neural networks](#)
6. [Recurrent Neural Networks Are Universal Approximators](#)

NN or ANN

A neural network (NN) or artificial neural network (ANN) is a network of artificial neurons arranged in layers.

Perceptron

The artificial neurons (also called perceptron) are inspired by biological neurons in biological neural networks (BNNs)

UATs

UATs are theorems associated with the approximation capabilities of NNs.
i.e., the ability of an NN to approximate arbitrary functions.

UATs

In general, UATs imply that NNs with appropriate parameters can approximate any continuous functions, i.e. are generalized models that can represent complicated relationships in the data

- Let $x \in \mathbb{R}^n$. The p –norm or l^p –norm of a vector x is

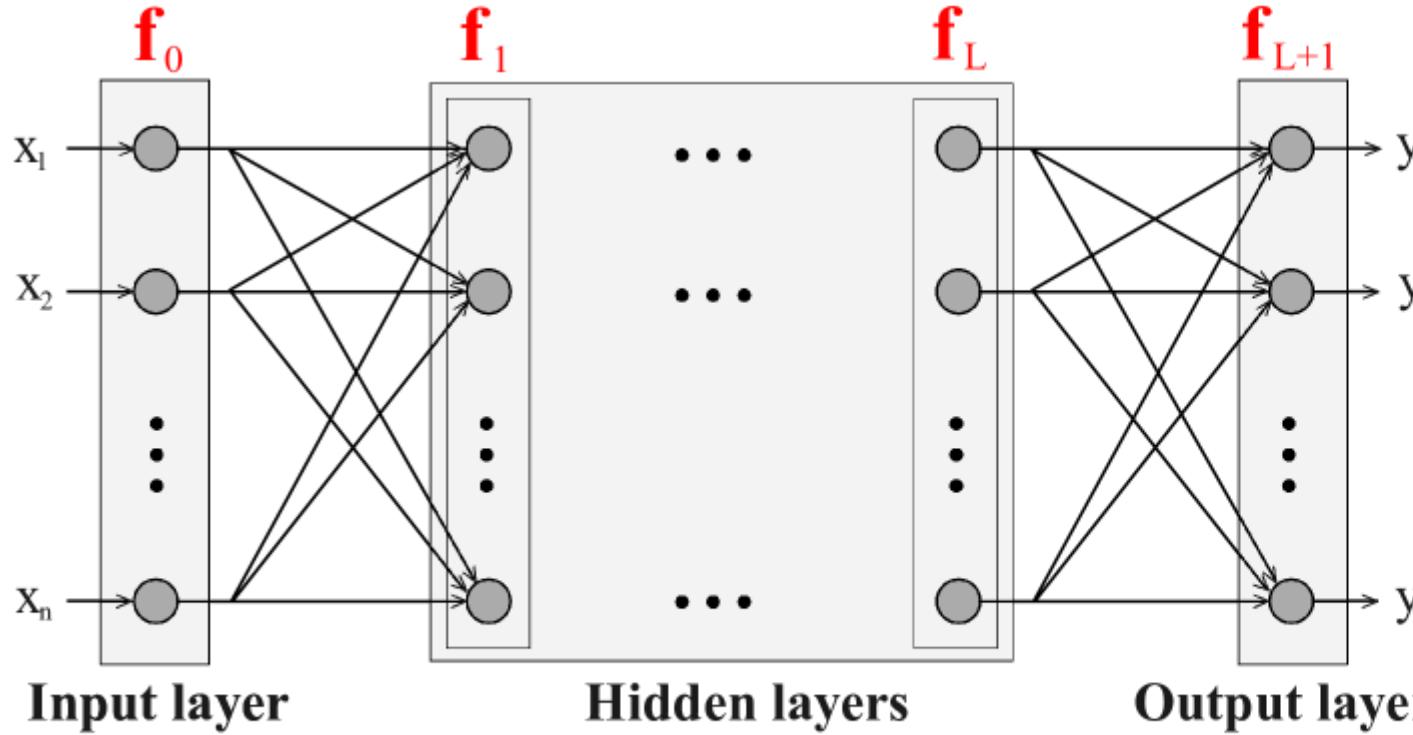
$$\|x\|_p = (|x_1|^p + |x_2|^p + \cdots |x_n|^p)^{1/p}$$

- The L^p norm of a function $f: X \rightarrow Y$ is defined as

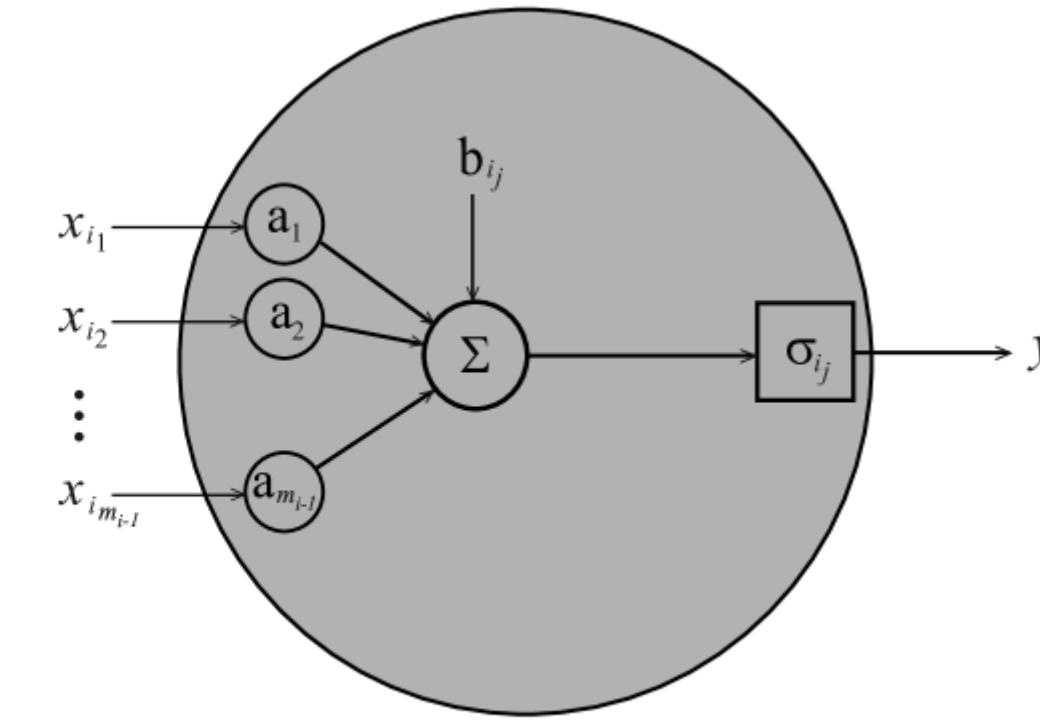
$$\|f\|_p = \left(\int_X \|f(x)\|_p^p \right)^{\frac{1}{p}}$$

- A subset X of \mathbb{R}^n is said to be compact if it is closed and bounded

- NN is a network of neurons arranged in layers



(a)



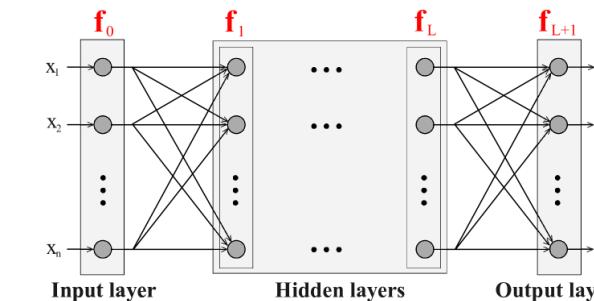
(b)

- NN is a network of neurons arranged in layers
- The layers are connected sequentially,
i.e., the output of each layer goes to the next layer as input.
- NNs can be represented using composite functions of the form

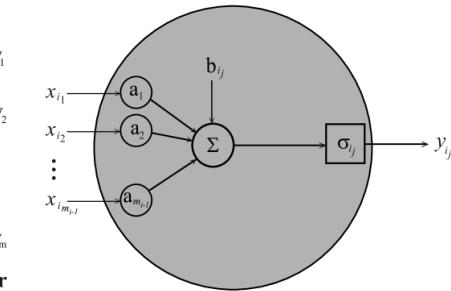
$$\mathbf{y} = f_{NN}(\mathbf{x}) = f_{L+1} \left(f_L \dots f_1(f_0(\mathbf{x})) \right)$$

where $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, $f_{NN}: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is the NN function and f_0, f_1, \dots, f_{L+1} are layers of the NN.

- f_0 is the input layer
- f_{L+1} is the output layer
- f_1, f_2, \dots, f_L are hidden layers

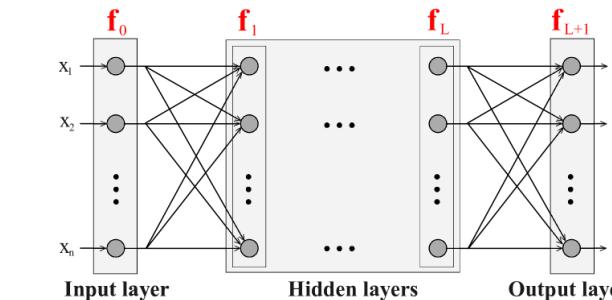


(a)

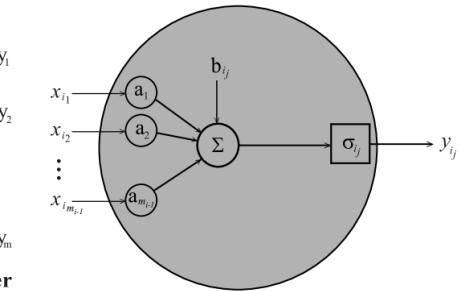


(b)

- How many layers in total?
- If the number of hidden layers is L , then the total number of layers is _____



(a)



(b)

- Input of the i^{th} layer be x_i
- Output of the i^{th} layer be y_i

$$y_i = f_i(x_i) = \sigma_i(A_i x_i + b_i)$$

Where

$$\sigma_i = [\sigma_{i_1}, \sigma_{i_2}, \dots, \sigma_{i_{m_i}}]'$$

They are elementwise activation functions for the i^{th} layer, m_i is the number of neurons in i^{th} layer.

- $A_i \in \mathbb{R}^{m_i \times m_{i-1}}$ is the weight matrix
- $b_i \in \mathbb{R}^{m_i}$ is the bias vector
- $x_i \in \mathbb{R}^{m_{i-1}}$
- $y_i \in \mathbb{R}^{m_i}$

List of Activation Function

ReLU or Rectified Linear Unit

$$\sigma(x) = \max(0, x) = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

Step Function

$$\sigma(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Logistic Function

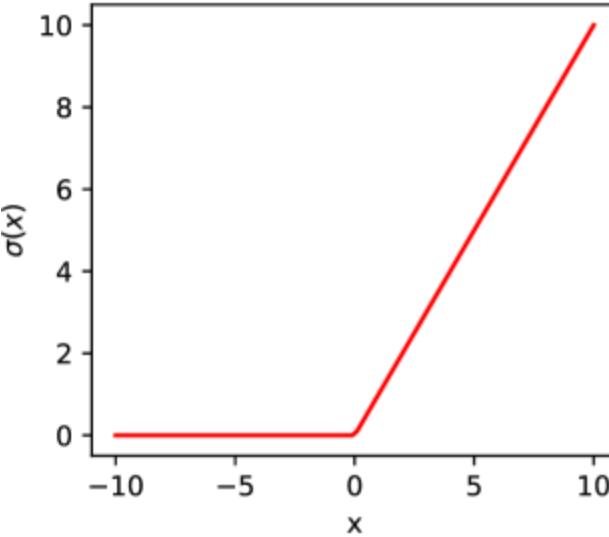
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Tanh Function

$$\sigma(x) = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

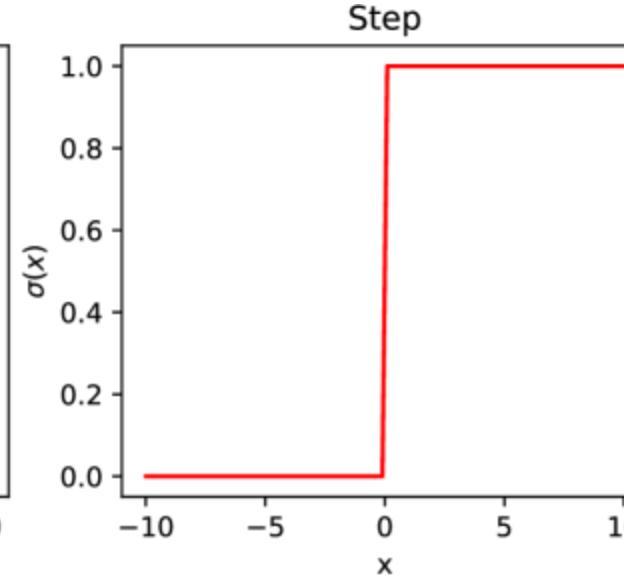
List of Activation Function

ReLU



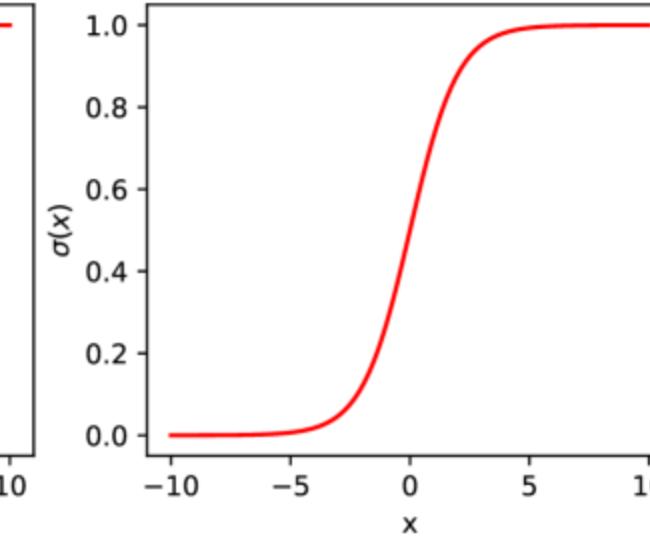
(a)

Step



(b)

Logistic



(c)

Tanh



(d)

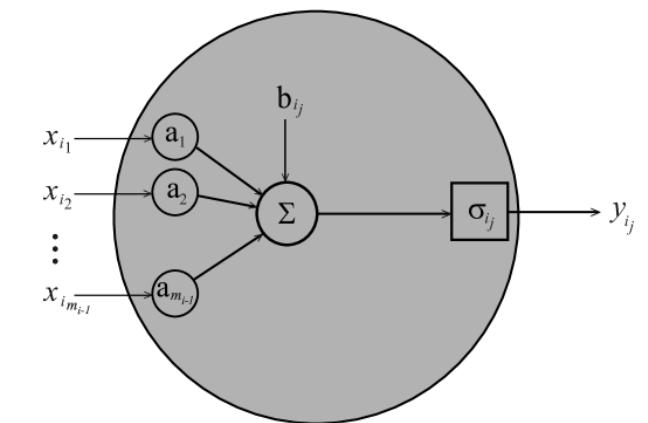
Neuron

Data processing units in NNs

$$y_{ij} = \sigma_{ij}(A_{ij}x_i + b_{ij})$$

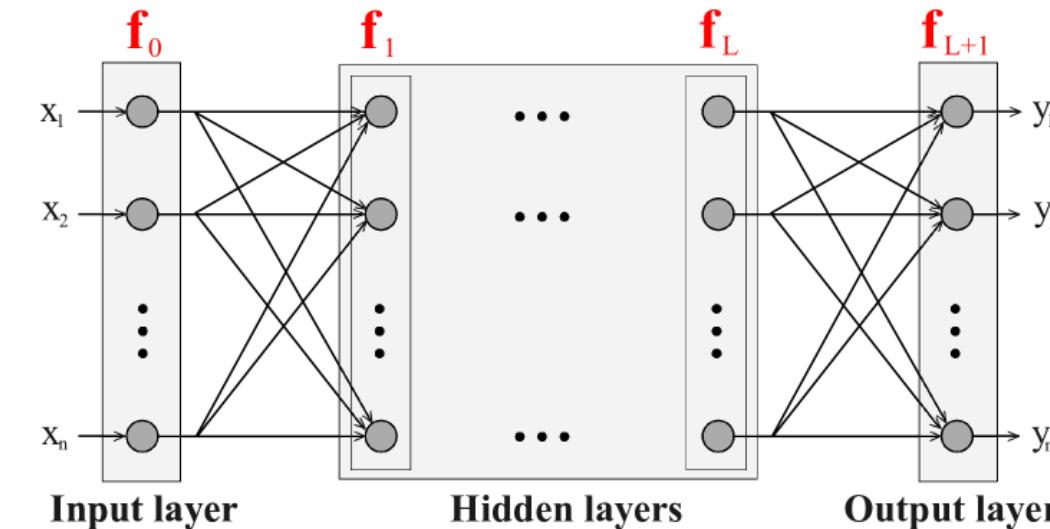
y_{ij} is the output of the j^{th} neuron in the i^{th} layer.

$A_{ij} = [a_1 \ a_2 \ \dots \ a_{m_{i-1}}]$ is the j^{th} row of the weight matrix A_i and b_{ij} is the j^{th} element of the bias vector b_i



Layer

- A collection of neurons that takes the same inputs.
- In general, layers are vector-valued functions.
- Layers can grouped into three categories: input, output, and hidden layers.



(a)

Input

each neuron has only one input

it simply passes the input

$$\sigma_0(A_0x + b_0) = x$$

Hidden

each neuron can have more than one input

gives a scalar output

σ : nonlinear.

Output

each neuron can have more than one input

gives a scalar output

σ : linear for regression
 σ : nonlinear for classification

Width

maximum number of neurons in a layer

$$W = \max_i m_i$$

Depth

number of hidden layers plus output layer

$$D = L + 1$$

Shallow NN

NN with only one hidden layer

$$D = 2$$

Deep NN

NN with more than one hidden layer

$$D > 2$$

- One Input, One linear Output, One Hidden Layer with three Neuron

$$y = A_2 \sigma_1(A_1 x + b_1) + b_2$$

$$A_2 = [0.1 \ 0.3 \ 0.7], A_1 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, b_1 = \begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix}, b_2 = 2, \sigma_1 = \tanh x$$

What is your y ? Derive it

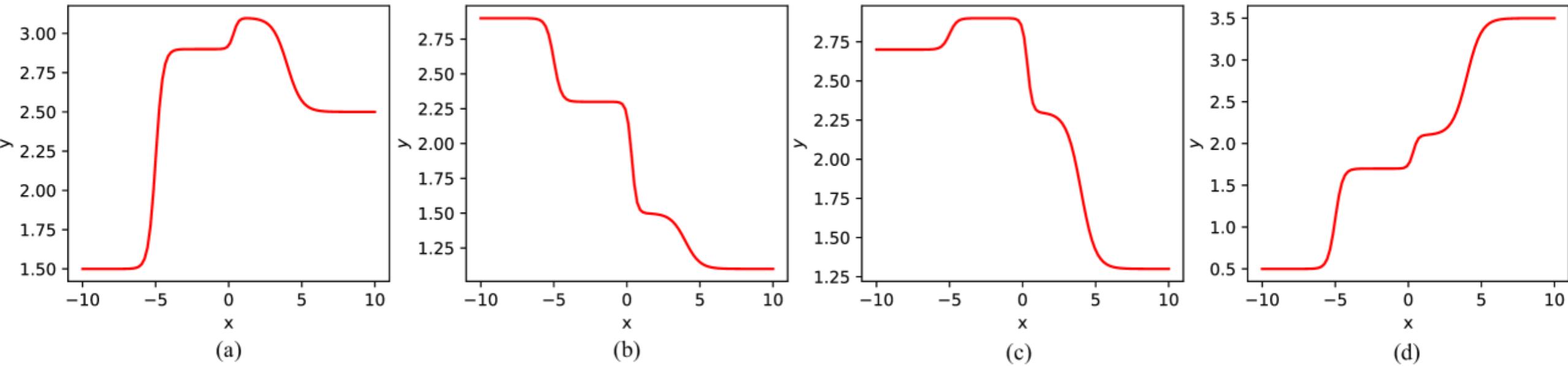
$$y = 0.1 \tanh(3x - 1) + 0.3 \tanh(4 - x) + 0.7 \tanh(2x + 10) + 2$$

Change A_2 as follows

$$A_2 = [-0.4 \ 0.2 \ -0.3],$$

$$A_2 = [-0.3 \ 0.5 \ 0.1],$$

$$A_2 = [0.2 \ -0.7 \ 0.6],$$

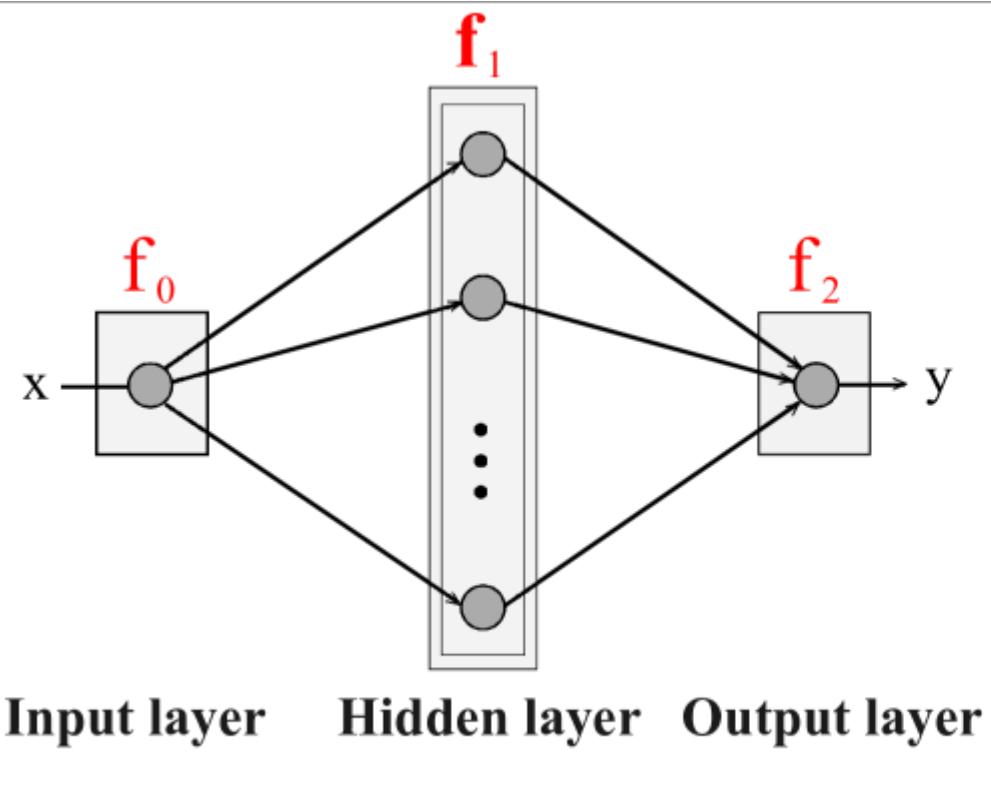


- These examples illustrate that we can represent complicated nonlinear relationships using NNs
- The main use of NNs is modeling relationships in the data, the question of the approximation capabilities of NNs gained interest naturally

Can we approximate any continuous function using NNs?

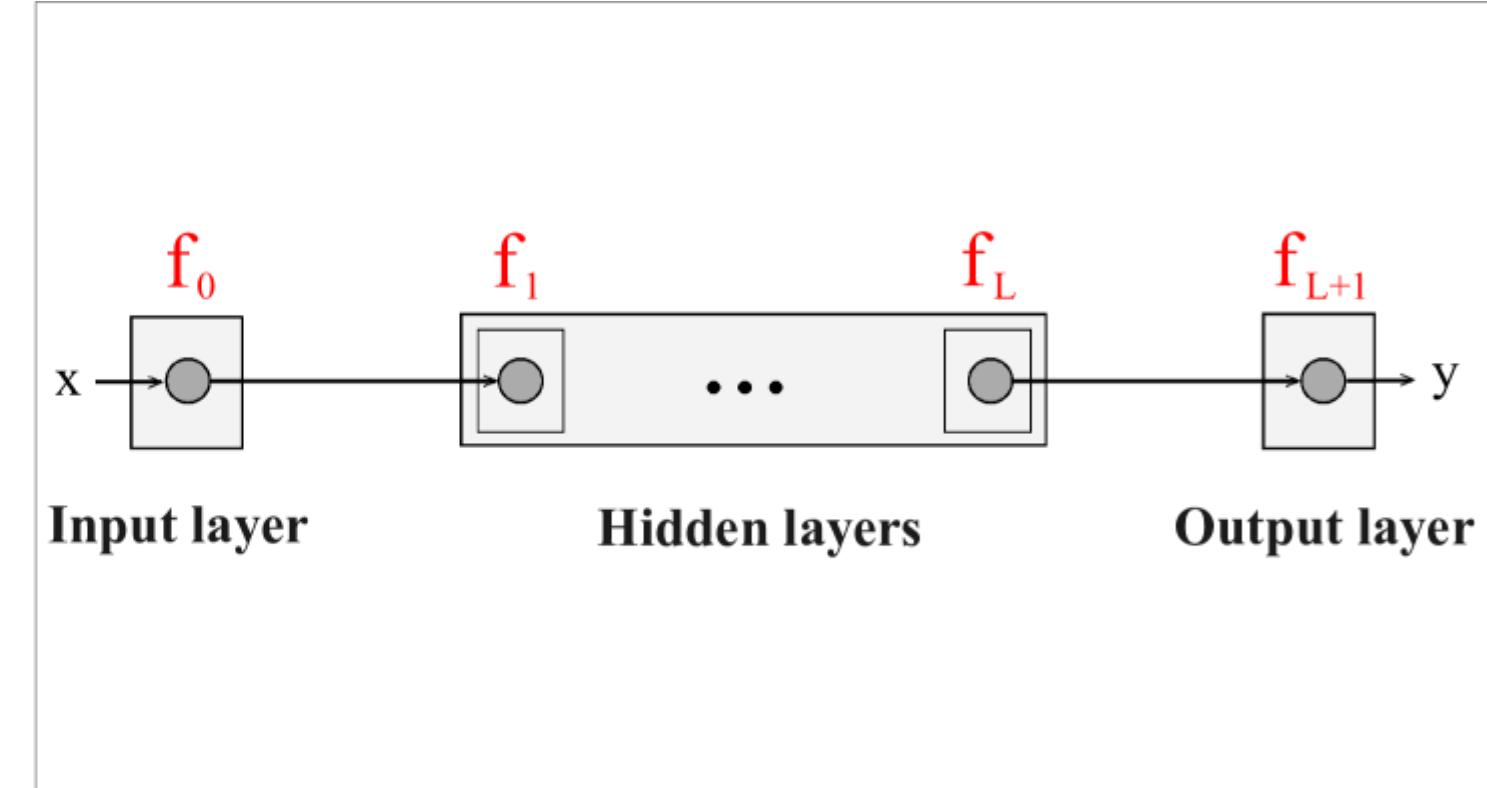
Universal Approximation Theorems (UATs)

- Arbitrary width case
- Arbitrary depth case



Panchatcharam

(a)



(b)

Consider the continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $a \in \mathbb{R}$ where f is N -times differentiable. Then f can be represented as a sum of polynomials

$$f(x) = f(a) + \sum_{n=1}^N \frac{f^{(n)}(a)(x - a)^n}{n!} + R_N(x)$$

Taylor's theorem can be considered as a mathematical foundation for linearization-based methods

Consider the continuous and periodic function with period T . Then f can be represented as a sum of sinusoids

$$f(x) = A_0 + \sum_{n=1}^N A_n \cos\left(\frac{2\pi nx}{T} + \phi_n\right)$$

Here A_n is the amplitude and ϕ_n is the phase of the n^{th} harmonic component.

It can be extended to non-periodic functions as well → Fourier Transform

Any continuous real-valued function $f: [a, b] \rightarrow \mathbb{R}$ can be approximated with a polynomial of

$$P_N(x) = \sum_{n=0}^N c_n x^n$$

such that

$$|f(x) - P_N(x)| < \epsilon$$

for any arbitrary $\epsilon > 0$

- Weierstrass Approximation theorem implies that any continuous function on a closed interval can be uniformly approximated by a polynomial function with arbitrary accuracy.
- The Weierstrass approximation theorem can be considered as a mathematical foundation for polynomial regression and interpolation methods.

Hilbert's 13th Problem

Can any continuous function of more than two variables be expressed as a superposition of finitely many continuous functions of two variables?

This problem was solved by Arnold and Kolmogorov in 1957 which resulted in the Kolmogorov-Arnold representation theorem

Kolmogorov-Arnold Representation Theorem

Any continuous real-valued function $f: [0,1]^n \rightarrow \mathbb{R}$ can be approximated with a polynomial of

$$f(x) = f(x_1, x_2, \dots, x_n) = \sum_{j=1}^{2n+1} \beta_j \left(\sum_{i=0}^n \alpha_{ij} (x_i) \right)$$

Where $\alpha_{ij}: [0,1] \rightarrow \mathbb{R}$ and $\beta_j: \mathbb{R} \rightarrow \mathbb{R}$

- Taylor → Approximation of differentiable function (N times) by a polynomial
- Fourier → Approximation of continuous function and periodic by sinusoids
- Weierstrass → Approximation of continuous function by polynomials
- Kolmogorov-Arnold → More than two variables as a superposition of finitely many continuous functions of two variables.

Universal Approximation Theorem – Width

- After the introduction of Neural Networks, approximation capabilities of sigmoid functions gained popularity, since in the initial versions of NNs sigmoid functions were used as activation functions

The depth or number of layers in the NN is considered to be bounded.

One Hidden Layer Neuron

$$y = \text{ReLU}(2x - 4)$$
$$y = \text{ReLU}(-x - 3)$$

Two Neurons

$$y = \text{ReLU}(2x - 4) + \text{ReLU}(-x - 3)$$

Three Neurons

$$y = 0.3\text{ReLU}(2x - 4) + 0.7\text{ReLU}(-x - 3) - 0.5\text{ReLU}(4x - 20)$$

ReLU or Rectified Linear Unit

$$\sigma(x) = \max(0, x) = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

One Hidden Layer Neuron

$$y = \text{ReLU}(2x - 4)$$

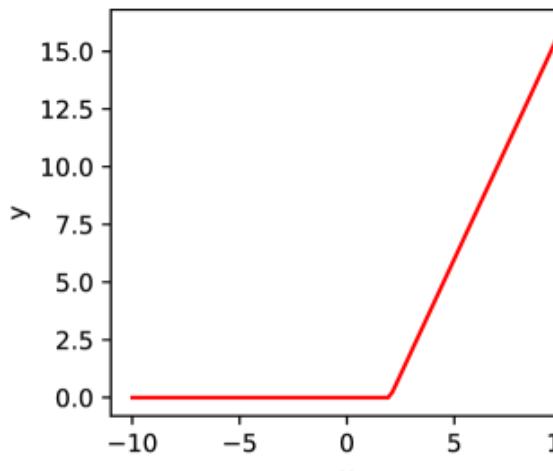
$$y = \text{ReLU}(-x - 3)$$

Two Neurons

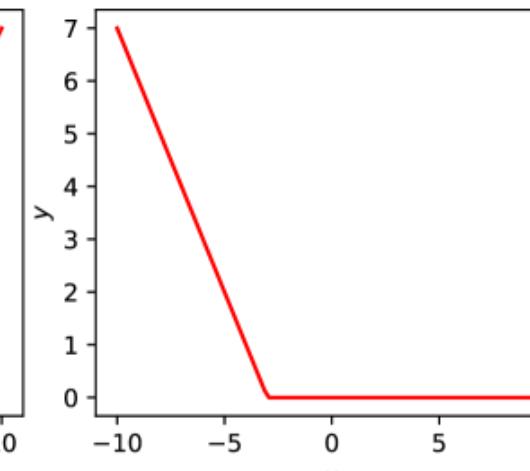
$$y = \text{ReLU}(2x - 4) + \text{ReLU}(-x - 3)$$

Three Neurons

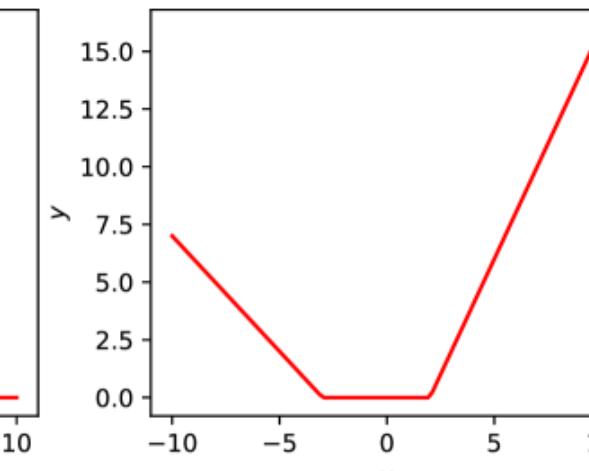
$$y = 0.3\text{ReLU}(2x - 4) + 0.7\text{ReLU}(-x - 3) - 0.5\text{ReLU}(4x - 20)$$



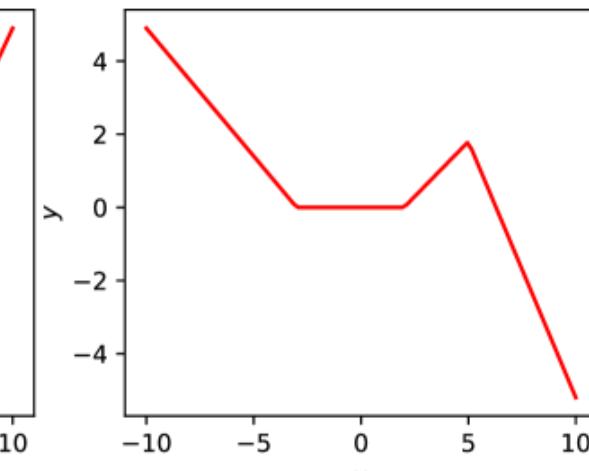
(a)



(b)



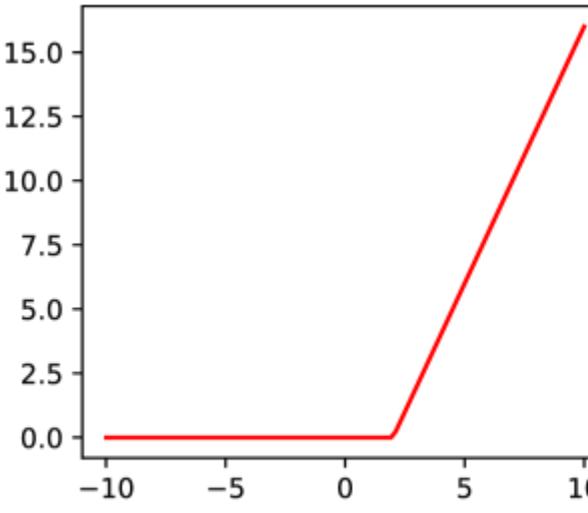
(c)



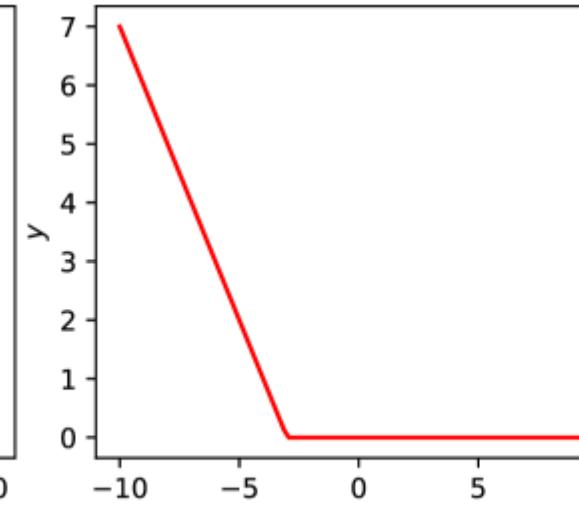
(d)

How many folds in two neurons?
How many folds in three neurons?

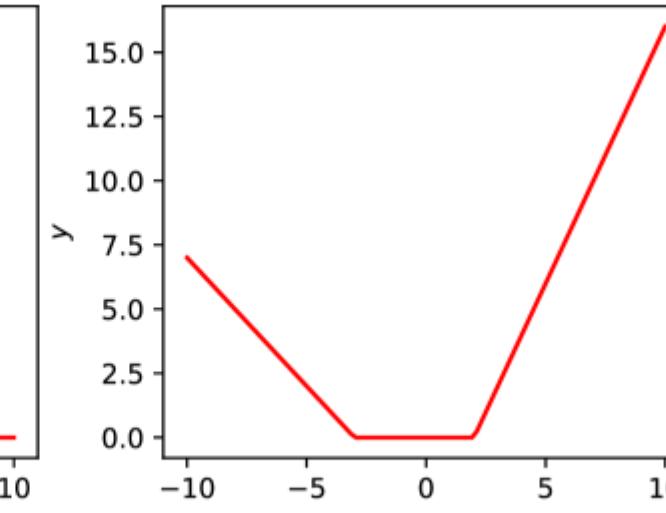
Number of folds in the curve increases with the number of neurons.



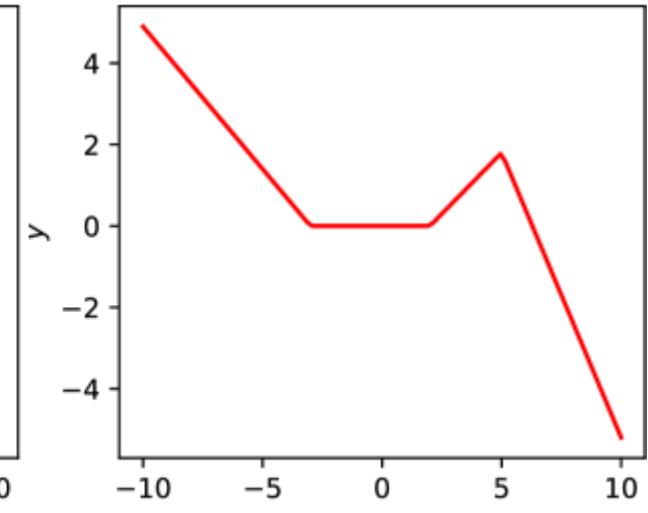
(a)



(b)



(c)



(d)

Consider the graph $f_{NN}(x)$ which has folds along H hyperplanes defined linear functions $A_{1j}x + b_{1j} = 0, x \in \mathbb{R}^n, j = 1, 2, \dots, H$. Then the number of linear pieces of f_{NN} is

$$n_l = \sum_{n=0}^N \binom{H}{n}$$

- 1980s: UATs attempted to extend Kolmogorov-Arnold Representations
- Continuous functions can be arbitrarily approximated using NNs with two hidden layers and monotonic activation function [Cun, Farber]
- Arbitrary functions can be approximated by one hidden layer network with infinite number of neurons [Miyake]

- One hidden layer with a monotone cosine activation function can give Fourier series approximation to a given function as its output
 - ❖ Limited to only square-integrable functions on a compact set

The UATs are mostly t space can be approximated by f_{NN} .stated using the density of the functions $f_{NN}(X)$ generated by NNs within a given function space of interest
i.e. if $f_{NN}(X)$ is dense in a given space, then, any function in that space is approximated by f_{NN}

Funahashi, Hornick et al., and Cybenko, 1989

Let X be any compact subset of \mathbb{R}^n and σ be any sigmoid activation function, then the sum of the form

$$f_{NN}(x) = A_2 \sigma(A_1 x + b_1) = \sum_{j=1}^{m_1} \sigma_{2j} \sigma(A_{1j} x + b_{1j})$$

is dense in X .

Given any $f: X \rightarrow \mathbb{R}$ and $\epsilon > 0$, there is a finite sum f_{NN} as above for which $|f - f_{NN}(x)| < \epsilon$ for all $x \in X$.

The above theorem means that NNs with one hidden layer and sigmoid activation function can approximate any continuous univariate function on a bounded domain with arbitrary accuracy

Let X be any compact subset of \mathbb{R}^n and σ be any sigmoid activation function, then the sum of the form

$$f_{NN}(x) = A_2 \sigma(A_1 x + b_1) = \sum_{j=1}^{m_1} \sigma_{2j} \sigma(A_{1j} x + b_{1j})$$

is dense in X iff σ is not a polynomial function.

Similar theorems were developed for other activation functions such as ReLU, step, tanh, etc which are non-polynomial functions.

The above theorem means that NNs with one hidden layer and sigmoid activation function can approximate any continuous univariate function on a bounded domain with arbitrary accuracy

- The arbitrary depth case has attained a lot of research interest recently, especially after the introduction of deep learning as a separate domain in ML

One Hidden Layer Neuron

$$y = \text{ReLU}(0x + 5)$$
$$y = \text{ReLU}(2x + 4)$$

Two Hidden Layers

$$y = \text{ReLU}(-0.5\text{ReLU}(2x + 4) + 5)$$

Three Neurons

$$y = \text{ReLU}(-2\text{ReLU}(-0.5\text{ReLU}(2x + 4) + 5) + 3)$$

We assumed width $W = 1$

ReLU or Rectified Linear Unit

$$\sigma(x) = \max(0, x) = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$

One Hidden Layer Neuron

$$y = \text{ReLU}(0x + 5)$$

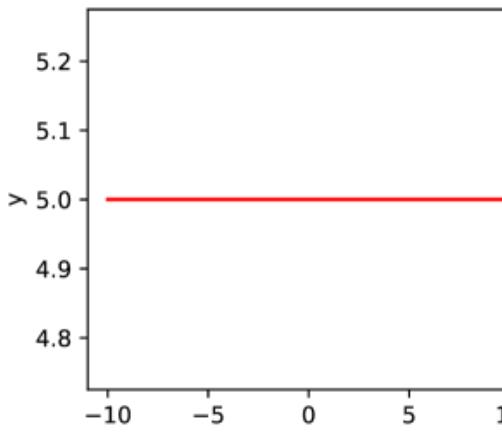
$$y = \text{ReLU}(2x + 4)$$

Two Hidden Layers

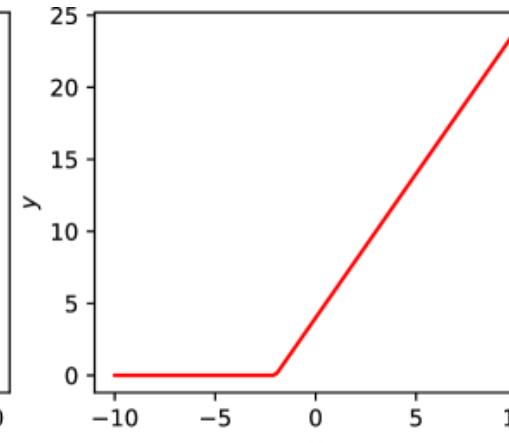
$$y = \text{ReLU}(-0.5\text{ReLU}(2x + 4) + 5)$$

Three Neurons

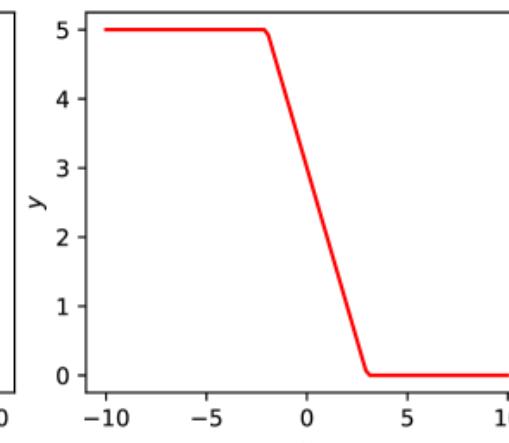
$$y = \text{ReLU}(-2\text{ReLU}(-0.5\text{ReLU}(2x + 4) + 5) + 3)$$



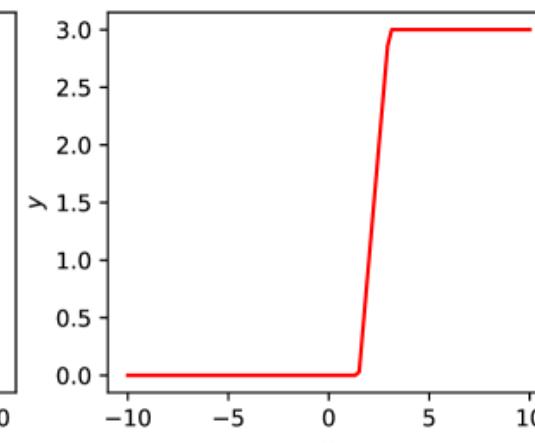
(a)



(b)



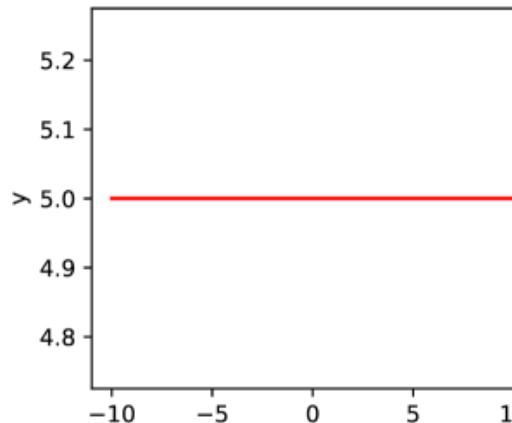
(c)



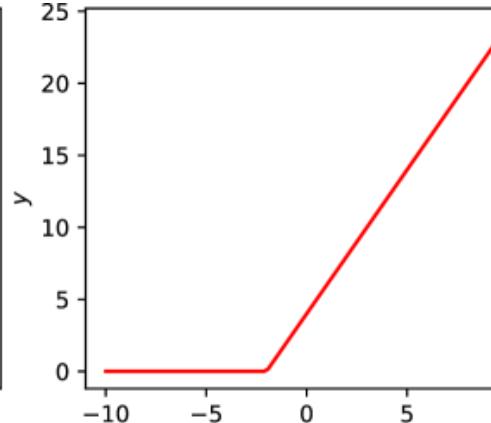
(d)

For NNs with one neuron per layer and ReLU activation function, the output can be either

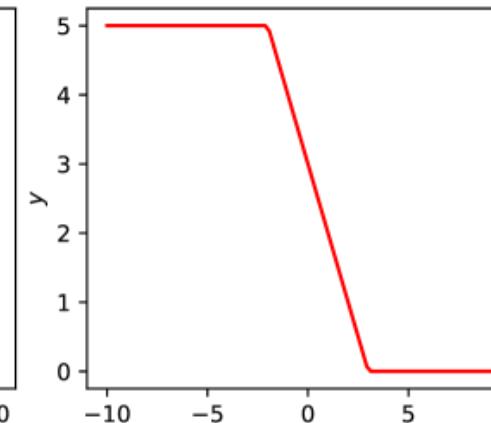
- a straight line
- piecewise linear curve with one fold
- piecewise linear curve with two folds



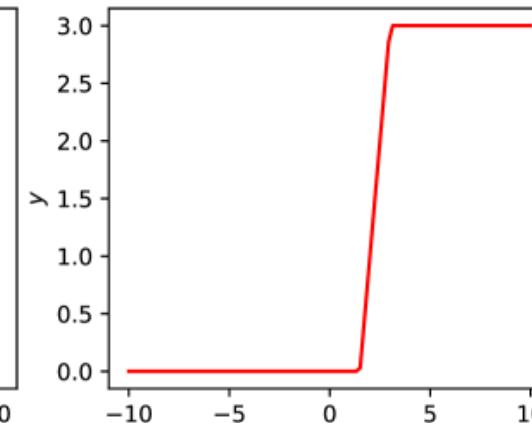
(a)



(b)

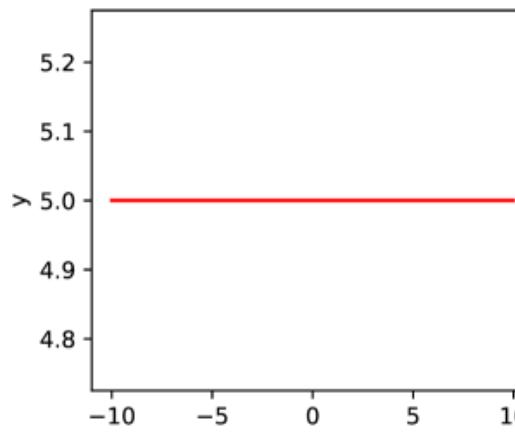


(c)

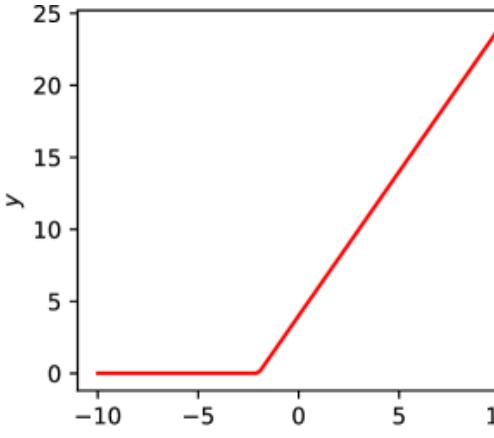


(d)

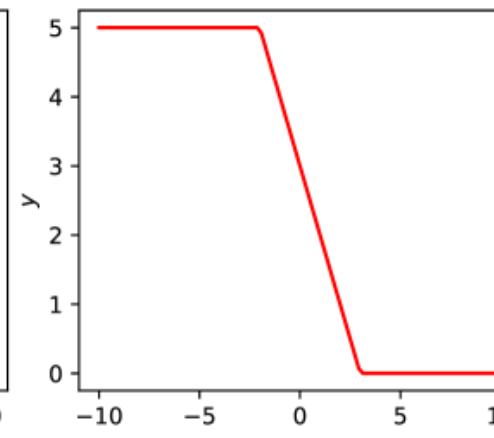
After two folds, can the subsequent layers add any further folds for one neuron per layer?
If so, how?



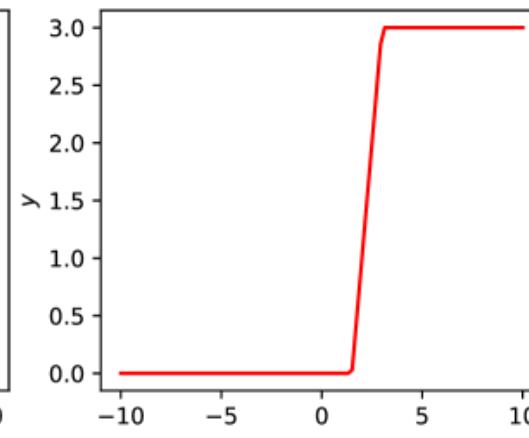
(a)



(b)



(c)



(d)

Except for a negligible set, all functions $f: \mathbb{R}^n \rightarrow \mathbb{R}$ cannot be approximated by any ReLU network whose width $W \leq n$.

- Width-1 NNs can approximate only a small class of univariate functions
- The minimum width required for universal approximation should be greater than 1.

Issue: Finding the minimum width for universal approximation with deep NNs.

For any Lebesgue measurable function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ and $\epsilon > 0$, there exists a network f_{NN} width $W \leq n + 4$ with ReLU activation function which satisfies

$$\int |f(x) - f_{NN}(x)| dx < \epsilon$$

- NNs with arbitrary hidden layers and at most $n + 4$ number of neurons per layer can approximate any functions in a Lebesgue integrable space with sufficient accuracy

The minimum width required for universal approximation of Lebesgue integrable functions $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is $\max[n + 1, m]$

- the minimum width required for universal approximation in deep NNs is $n + 1$
- Width-2 NNs with a suitable activation function are also universal approximators for continuous univariate functions.

Proof of Universal Approximation Theorem

0-1 Squashing Function

Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be increasing, continuous and $\lim_{x \rightarrow -\infty} \sigma(x) = 0$ and $\lim_{x \rightarrow \infty} \sigma(x) = 1$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

K be a compact subset of \mathbb{R}^n

$$\mathcal{N}_1 = \left\{ f \in C(K) : f(x_1, x_2, \dots, x_n) = \sum_{i=0}^n a_i x_i \right\}$$

For some $a_0, a_1, \dots, a_n \in \mathbb{R}$

$$\mathcal{N}_1^\sigma = \{f \in C(K) : F = \sigma \circ f, \text{ for some } f \in \mathcal{N}_1\}$$

- \mathcal{N}_1 is the set of all affine functions of x_1, x_2, \dots, x_n
- \mathcal{N}_1^σ is the set of all possible node output functions in Layer 1

$$\mathcal{N}_{k+1} = \left\{ g \in C(K) : g = a_0 + \sum_{i=1}^m a_i F_i \right\}$$

For some $a_0, a_1, \dots, a_n \in \mathbb{R}, F_i \in \mathcal{N}_k^\sigma$

$$\mathcal{N}_{k+1}^\sigma = \{ G \in C(K) : G = \sigma \circ g, \text{ for some } g \in \mathcal{N}_{k+1} \}$$

- \mathcal{N}_{k+1}^σ is the set of all possible node output function in Layer $k + 1$
- $\mathcal{N}_k^\sigma \subset \mathcal{N}_{k+1}$
- If $g_1, g_2 \in \mathcal{N}_k$, then $a_0 + a_1 g_1 + a_2 g_2 \in \mathcal{N}_k$ for all $a_0, a_1, a_2 \in \mathbb{R}$

Let us show that σ separates points in \mathbb{R}^n in a strong sense

Let x_0 and x_1 be distinct real numbers. For each $\epsilon > 0$, there exist $s, t \in \mathbb{R}$ such that $\sigma(s + tx_0) < \epsilon$ and $\sigma(s + tx_1) > 1 - \epsilon$. If in addition, $x_0 < x_1$ and $\epsilon < 1/2$, then $\sigma(s + tx) < \epsilon$ on the interval $(-\infty, x_0]$ and $\sigma(s + tx) > 1 - \epsilon$ on the interval $[x_1, \infty)$

Let x_0 and x_1 be distinct real numbers. For each $\epsilon > 0$, there exist $s, t \in \mathbb{R}$ such that $\sigma(s + tx_0) < \epsilon$ and $\sigma(s + tx_1) > 1 - \epsilon$. If in addition, $x_0 < x_1$ and $\epsilon < 1/2$, then $\sigma(s + tx) < \epsilon$ on the interval $(-\infty, x_0]$ and $\sigma(s + tx) > 1 - \epsilon$ on the interval $[x_1, \infty)$

Proof [First Part]:

WLOG: $\epsilon < 1$. By 0-1, squashing function, there exist $y_0, y_1 \in \mathbb{R}$ such that $\sigma(y_0) = \frac{\epsilon}{2}$ and $\sigma(y_1) = 1 - \frac{\epsilon}{2}$.

$$\begin{pmatrix} 1 & x_0 \\ 1 & x_1 \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

When does it have a solution? Does the condition satisfied from our hypothesis? Can you fill the remaining proof?

Let x_0 and x_1 be distinct real numbers. For each $\epsilon > 0$, there exist $s, t \in \mathbb{R}$ such that $\sigma(s + tx_0) < \epsilon$ and $\sigma(s + tx_1) > 1 - \epsilon$. If in addition, $x_0 < x_1$ and $\epsilon < 1/2$, then $\sigma(s + tx) < \epsilon$ on the interval $(-\infty, x_0]$ and $\sigma(s + tx) > 1 - \epsilon$ on the interval $[x_1, \infty)$

Proof [Second Part]:

$x_0 < x_1$ and $\epsilon < \frac{1}{2}$. σ is monotone and

$$\sigma(s + tx_0) < \epsilon < \frac{1}{2} < 1 - \epsilon < \sigma(s + tx_1)$$

$\sigma(s + tx)$ is increasing. Hence the lemma

Let us show that σ separates points from closed sets using functions in \mathcal{N}_2 in strong sense. i.e, one layer is sufficient to separate points from closed sets.

Let $B \subset K$ be a closed set and $x_0 \in K - B$. For each $\epsilon > 0$, there exists $g \in \mathcal{N}_2$ such that $g > 1 - \epsilon$ on B and $g(x_0) < \epsilon$.

Using a 2-hidden-layer network, we can **separate** one outside point from an entire closed set - do a “soft indicator” that is near 0 at x_0 and near 1 on B

Let $B \subset K$ be a closed set and $x_0 \in K - B$. For each $\epsilon > 0$, there exists $g \in \mathcal{N}_2$ such that $g > 1 - \epsilon$ on B and $g(x_0) < \epsilon$.

Proof:

WLOG: $\epsilon < \frac{1}{3}$. Let $b \in B \Rightarrow b \neq x_0 \Rightarrow \exists f_b \in \mathcal{N}_1$ s.t. $f_b(x_0) < \frac{\epsilon}{2}$ and $f_b(b) > 1 - \frac{\epsilon}{2}$
 $U_b = \{x \in K : f_b(x) > 1 - \epsilon\}$

f_b is continuous $\Rightarrow U_b$ is open and $b \in U_b$. $\{U_b\}_{b \in B}$ is an open cover of the compact set B .
 Therefore, \exists a finite subcover $\{U_{b_1}, U_{b_2}, \dots, U_{b_n}\}$ that covers B

By above lemma, $\exists s, t \in \mathbb{R}$, s.t. $\sigma(s + tx) < \epsilon/N$ on $(-\infty, \epsilon)$ and $\sigma(s + tx) > 1 - \epsilon$ on $(1 - \epsilon, \infty)$

Define $F_j = \sigma(s + t f_{b_j}) \Rightarrow F_j \in \mathcal{N}_1^\sigma$, $F_j(x_0) < \epsilon/N$ and $F_j > 1 - \epsilon$ on U_{b_j}

Define $g = \sum_j^N F_j$, proof follows immediately.

Let us show that two hidden layers suffice to separate disjoint closed sets, in a sense very similar to the previous lemma.

Let A and B be disjoint closed subsets of K . Then for each $\epsilon > 0$

1. $\exists h \in \mathcal{N}_3$ such that $h < \epsilon$ on B and $h > 1 - \epsilon$ on A
2. $\exists H \in \mathcal{N}_3^\sigma$ such that $0 \leq H < \epsilon$ on B and $1 - \epsilon < H \leq 1$ on A

Let A and B be disjoint closed subsets of K . Then for each $\epsilon > 0$

1. $\exists h \in \mathcal{N}_3$ such that $h < \epsilon$ on B and $h > 1 - \epsilon$ on A
2. $\exists H \in \mathcal{N}_3^\sigma$ such that $0 \leq H < \epsilon$ on B and $1 - \epsilon < H \leq 1$ on A

Proof:

WLOG: $\epsilon < \frac{1}{3}$. Let $a \in A$, by above lemma, $\exists \widetilde{g}_a \in \mathcal{N}_2$ such that $\widetilde{g}_a > 1 - \frac{\epsilon}{2}$ on B and $\widetilde{g}_a(a) < \frac{\epsilon}{2}$. Let $g_a = 1 - \widetilde{g}_a \Rightarrow g_a \in \mathcal{N}_2$ and $g_a < \frac{\epsilon}{2}$ on B and $g_a(a) > 1 - \frac{\epsilon}{2}$

$$U_a = \{x \in K : g_a(x) > 1 - \epsilon\}$$

g_a is continuous $\Rightarrow U_a$ is open. Since $a \in U_a \Rightarrow \{U_a\}_{a \in A}$ is an open cover of $A \Rightarrow$ Finite subcover for A (Why?)