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Relative and Absolute Errors

Let X be an approximation of value x. Then the absolute and relatives errors are defined as

Eaps = |x — % Erer = [ ==
Example 1: x = 101 and ¥ = 1.001 x 10 Example 2: x = 10% and ¥ = 1.001 x 107
E,p. = 0.001 x 1016 = 1013 E,p = 0.001 x 102 = 0.1
1013 _ . _ ]
Erel = _1016 = 1073 Erel = 1—02 =10
Example 3: x = 1000 and ¥ = 1000.1 Example 4:x = 1and ¥ = 1.1
Eqps = 0.1 Eaps = 0.1
1 . 0.1
Erel — M =10 = 0.01% Erel — T =0.1=10%
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SOURCES OF ERRORS IN COMPUTATION

Physical Problem > Mathematical Model > Numerical Approximation
I SOURCE OF ERRORS ]
Error in initial data/parameters Errors in Mathematical Model
Round-off Error Truncation Error

Approximations due to
discretization or truncation

of Series
Controllable

Computer’s inability to
represent numbers exactly

(chopping and rounding)
unavoidable error
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Round-off Error

Illustrative Example: Consider x = 1.23456 and y = 1.22222
If x and y and approximated by their first three digit, i.e., X = 1.23 and y = 1.22

X—y=123-122=0.01

Note that error in x and y was less than 1%.

Compute errorin x — y:

‘0.01234 —0.01

i~ 0
0.01234 ‘ 0%
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Real-World Disasters Due to Rounding Errors

1. Failure of U.S. Anti-Missile Defense System (Gulf War 1991)
» US missile defense system tried to stop incoming Scud missiles.
» Small rounding error in representing 0.1 seconds in computer memory.
» Over several hours, the error added up (to ~0.34 seconds) = system miscalculated missile position (~500 meters).
>

Impact: Missed missile hit a barracks - 28 soldiers killed.

2. Vancouver Stock Exchange Bug (1982)
» Software used to calculate stock prices had rounding errors.
» Magnitude of errors: Index was truncated to three decimal places for each trade.
» Over hundreds of thousands of trades, the small errors added up to several thousand dollars lost per trader

» Impact: Financial discrepancies across the exchange - losses for investors and trading firms.

Takeaway: Even tiny numerical errors in computers can accumulate and cause serious real-world problems,
from safety disasters to financial losses.
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Round-off Error

letx =2,y =2,z=+/2%10"1° Let x = 108

Evaluate (y +2z) — x

B M=2
== y=2:

»>» Z=sgrt () *le-15;

=» (Y+Z)-X

dns =

1.3323e-15

1.4142e-15

. e

~ 6% error

Evaluate

1
Vx2+1—x

== x=le+d;
=» 1/ (sqgro(=x™2+1)-x)
== 1/ (sgro(x”2+1) -=)

dng =
Inf
Accumulation of roundoff error while subtracting numbers of similar magnitude
Accumulation of roundoff error while adding large and small (in magnitude) number
If |y| < 1 then x/y may accumulate large roundoff error

If |y| > 1 then xy may accumulate large roundoff error

Overflow/underflow: number is too large or too small to fit into the floating point system

Dr. Jitendra Kumar — IIT ROPAR 6



Round-off Error (Some Fixes)

letx =2,y =2,z=+/2*10"1° Let x = 108

i B 1
Instead of Evaluating (y +z) — x Instead of Evaluating —
Evaluate (y — x) +z x“+1—x
i :: Evaluate yx2 4+ 1+ x ~ 2 x 108

>» Z=sgrt(2)*le-15;
>» (y-X)+Z

»» X=led:
ans = >>» sqgqrb (x72+1)+x
l.ﬂlﬂZE—lE anﬂ —
sz 200000000
27 -
1.4142=-15
e
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Truncation Error

Results from approximation of an exact mathematical expression, e.g., truncation of infinite series,
Discretization of ODE/PDE, Finite Differences, etc.

Example: Taylor’s polynomials are approximations of some functions

Taylor’s Formula Taylor’s Polynomial

A
K f(n) (xo) \n

f(x) =1 (xo) + f(xp)(x —xp) + -+ ] (x —x0)"'+ Ry
Remainder: R, = Fo0©) (x —xo)"*!, xg< & <x  Truncation Error
T (n+ D) 07 270
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Truncation Error

17 (n) Taylor’s
Po(x) = f(xo) + f(x0)(x — xp) + 4 ;J,CO) (x — x0)%+ -+ ! n(,xO) (x — x0)" Polynomial
' ' of order n

Example: Taylor’s Polynomial of e* around x = 0.

2 3 4 5

Po() = 1+ % +o +— +o +—
5\) = X T T4 T 120

)= 1+x 4 45 4
4] = YT T T o
x%  x3
P.(x) = T4
3(3() 1+x+2 +6
x2

Po(x) = 1; Pi(x) = 1+ x;

3 /"I 0. 1 2 3
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Combined effect of Truncation error and Round-off error

Consider y =x*—x3 —x%? —x+1; Total error x = 10
d
Its derivative d =4x3 —3x% —2x — 1:
dx
10° ]

Approximation of the derivative:

(@)
Forward difference LLE
e |
dy yG+h) -y Ja+h) - 1071 |
dx h h - -
Truncation error round off error

1071° 10710 107 10°

Total Error =

dy (90c+h) - 5()
dx

h
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Combined effect of Truncation error and Round-off error

Using Taylor’s theorem, we have

y(xip1) = y(x) + (X341 — x)y () + (x _in)

In computer, let y(x) be approximated (round off error) by y(x), i.e.,

y(xit1) = J(Xi41) + €541 & y(x;) = J(x;) + e
Y(xi41) — y(x;) €i+1 — € h
= vi(x:) = 4+ g
y' () ~ - ~f(©)
True Finite Difference Round off Truncation
Value Approximation Error Error

Assuming e; < ¢,for alli and f"(§) < M, then the Total Error is given by

y(x; — y(x; 2€ M
= y’(xi) _ y( L+1)h y( l) S 7 n ?h
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i+1) —y(x;) h _,
y(xis1) y(x)_ff &

@ =y =2

103_

Total Error

10-15

1071° 10




Sensitivity of Mathematical Models

Condition Number of a Function

X

Consider flx) = T

—_

0.97 32.3333
— About 1% error in x leads to more than 51% error in f(x)
0.98 49.0000
—0.97 —0.4924
— About 1% error in x leads to more than 0.50% error in f(x)
—0.98 —0.4949

The condition number of a function measures how much the output value of the function can change for a

small change in the input argument.
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Sensitivity of Mathematical Models

Condition Number of a Function

Let X be an approximation of x. (OR X is a perturbed value of x)

We want to see the effect of the discrepancy between X and x on the value of the function.
Using Taylor’s series (Mean value theorem): f(x) = f(%) + (x — X)f'(¢)

f&)—f&@ ') O -f® oxf) k-X)

(x — %)

fx)  fx) f(x) f(x) X
Change in condition changein
output number input

The condition number of evaluation of f at the point x is a measure of the ratio of the relative change in a
function f (x) to the relative change in x.
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Sensitivity of Mathematical Models

4 N
vl Nty xf'(x) 1 fQx) = f (%) xf'(x) (x—%)
ondition Number = = ~
fx) 1-—x f(x) f(x) X
Change in condition changein
output number input
X
X) =
fo)=1— 1
0.97 32.3333
— About 1% error in x leads to more than 51% error in f(x)
0.98 49.0000
—0.97 —0.4924
— About 1% error in x leads to more than 0.50% error in f(x)
—0.98 —0.4949

1
= ~ 0.50
x=—098 1—x

Condition Number
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Example: Evaluate f(x) =+vx2+1—x forx =108

Condition number of f: = —1 Problem is well conditioned

Computing steps: 1.Compute x?+1 =:t; Well conditioned k = 2
" 1
2. Compute /t; =:t, Well conditioned k ~ ~

3. Compute t, — x Il conditioned k > 1

Problem is well-conditioned but the obvious algorithm used to evaluate it is unstable.

Different algorithm must be used for evaluating the original expression.

1
f(x)=+x?+1—x = T 3. Compute t, + x = t3 Well conditioned k ~
X X

N |-

1
4. Compute g Well conditioned k =~ 1
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Rounding errors are unavoidable - but understanding them prevents catastrophic mistakes.

Conditioning tells us about the problem:

* Well-conditioned - input errors don’t grow much. mumerical reliability ~ comes fron“
understanding both the problem

(conditioning) and the method
(stability).

* lll-conditioned - small input errors get magnified.

Stability tells us about the algorithm:
Good algorithms can control errors,
but they cannot change the nature of

* Unstable - errors grow during computation. Qhe problem itself. /

* Stable = controls rounding/perturbation errors.

Key relationship:
* Well-conditioned problem + stable algorithm = reliable results.

* |ll-conditioned problem - unreliable results, regardless of algorithm.

Preconditioning: transform a hard (ill-conditioned) system into an easier (well-conditioned one).
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Matrix Conditioning and System of Linear Equations

ITERATIVE METHOD

A method for solving the linear system Ax = b is called iterative if it is a numerical method computing a sequence

of approximate solutions x*) that converges to the exact solution x as the number of iterations k goes to co.

DEFINITION (Convergence of an Iterative Method):

An iterative method is said to converge if for any choice of initial vector x(®) € R", the sequence of

approximate solutions x (F) converges to the exact solution x, i.e., ’lim x®) = .
—00
DEFINITION (Residual/Error):

We call the vector r, = b — Ax®) residual (respectively error e, = x5 — x) at the kth iteration.
REMARK:

In general, we have no knowledge of e, because the exact solution x is unknown. However, it is easy to compute

the residual 1y, so the convergence is usually dedicated on the residual in practice.
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Iterative Methods for Solving System of Linear Equations

Consider a system of linear equations A, xnXnx1 = bnx1

Jacobi Iteration Method
n A=
1
(k+1) _ (k)
=\ 2
J=1,]#1

x&+D) = _p=1(L + ) x® + D~1p

L: Lower triangular part of A

Gauss Seidel Method D : Diagonal entries of 4

1 2
(k+1) _ (k+1) E (k)
Xl- = a—u (bl — aijxj — aijxj

j<i j>i

) U : Upper triangular part of A

x®+D) = —(D + L)"1Ux® + (D + L)"1b

Dr. Jitendra Kumar — IIT ROPAR 19




Convergence of Iterative Methods

Iterative Methods: x®tD = gx® + Hp

Necessary and Sufficient Conditions:

The iterative methods converge for any initial guess if and only if all the eigenvalues of the iteration

matrix G have absolute value less than 1.

OR

The iterative methods converge if and only if the spectral radius (largest absolute eigenvalue) of G is less

thanl,i.e, p(G) < 1.
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Convergence Theorems (Iterative Methods for Solving Ax = b)

Sufficient Conditions :

1. If any norm of iteration matrix G is less than 1, i.e. ||G|| < 1, then the iterative methods converge

for any initial guess.

2. If A is strictly diagonally dominant by rows (or by columns) then the Jacobi and Gauss-Seidel methods

converge for any initial guess.
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Problem 1: Solve the system of linear equations: 0.835x; + 0.667x, = 0.168

0.333x; + 0.266x, =0.067

Jacobi Gauss-Seidel

Iterations X1 X2 Iterations X1 X2

1 1 1 1 1 1
> | —0.59760479 -1 2 —0.5976 1.000009
3 1 1.000009 3 —0.59761 1.000018
4 —0.597611983 ! 4 —0.59762 1.000027
5 1 1.00001801 5 —0.59763 1.000036
9996 —0.633954765 —1 9996 —0.67113 1.092056
9997 1 1.0455148 9997 | —0.67114 1.092065
9998 [~0.633962121 -1 9998 | —0.67115 1.092075
9999 1 1.04552401 9999 | —0.67115 1.092084
10000 [~0.633969478 -1 10000 | —0.67116 1.092094
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Problem 2: Solve the system of linear equations: 0 835x, + 0.667x, = 0.168

0.333x, + 0.266x, = 0.066

Jacobi Gauss-Seidel
Iterations X1 X2 Iterations X1 X2
1 1 1 1 1
2 —0.5976 —1.00376 2 —0.5976 0.99625
3 1.003003 0.99625 3 —0.59461 0.992499
4 —0.59461 —1.00752 4 —0.59161 0.988749
5 1.006006 0.992499 5 —0.58862 0.984998
6 —0.59161 —1.01128 z Z 058562 0.981248
9996 14.54216 —20.0024 9996 30.0264 —37.3413
9997 16.17919 —17.9569 9997 | 30.02953 —37.3452
9998 14.54522 —20.0063 9998 30.03266 —37.3492
9999 16.18226 —17.9607 9999 30.0358 —37.3531
10000 14.54829 —20.0101 10000 | 30.03893 —37.357
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Problem 3: Solve the system of linear equations: (0.835x; + 0.667x, = 0.168

0.333x; + 0.265x, = 0.068

Gauss-Seidel

Jacobi
Iterations X1 X2 Iterations X1 X2
1 1 1 1 1 1
5 —0.5976 —1 2 —0.5976 0.992518
3 1 1.007556 3 —0.59163 0.985065
4 —0.60364 —1 4 —0.58567 0.977639
5 1 1.015141 5 —0.57974 0.970241
6 —0.6097 1 6 —0.57383 0.962871
2996 1 3.05E + 08 2096 | —3.72E +16 | 4.68E + 16
2997 | —2.4E +08 -1 2997 | —3.74E +16 | 4.70E + 16
2998 1 3.06E + 08 2998 | —3.75E +16 | 4.71F + 16
2999 | —2.4E + 08 —1 2999 | —3.76E +16 | 4.73E + 16
3000 1 3.08E + 08 3000 | —3.78E +16 | 4.75E + 16
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Key Observations:

Underlined System of Linear Equations

0.835x; + 0.667x, = 0.168 0.835x; + 0.667x, = 0.168
0.333x; + 0.266x, =0.067 0.333x; + 0.266x, =0.066
Exact Solution: (1, —1) Exact Solution: (—666, 834)

1. System is very sensitive 0.835x; + 0.667x, = 0.168

* How to measure? 0.333x; + 0.265x, = 0.068
Exact Solution: (1, —1)
2. Convergence of iterative schemes J: (1,3.08E + 08) p(A) =1.0019
* How to check? GS: (—3.78E + 16,4.75E + 16) | p(A) =1.0038
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Key Observations:

Underlined System of Linear Equations

0.835x; + 0.667x, = 0.168 0.835x; + 0.667x, = 0.168
0.333x; + 0.266x, =0.067 0.333x; + 0.266x, =0.066
Exact Solution: (1, —1) Exact Solution: (—666, 834)
GS Approximation: (—0.6711, 1.0920) GS Approximation: (—30.0389, —37.357)
Residuals: _5.81 x 105 [—2.4750 x 1076
—2.0704 x 107> —1.0000 x 10~%

b — Ax®)

3. Residuals are small but the approximation is weird

*  Where is the problem?
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Vector Norm: Let x, y € R™. The norm of a vector is number that measures “size” or “length” of a vector. It satisfies
(i) |lx]| > O0forx # 0and||x|]| =0forx =0
(i) [[Ax]| = 1Alllxll, vAeR

(iii) llx + ¥l < llxll + [yl

Examples:  « The p-norm of the vector x = (x4, x5, ..., x,,)T € R" is defined as
1
i p
_ 1P
1l lell (p = 2: Euclidean Norm)
1=1

* The co-norm of the vector x = (x4, x5, ..., x,)T € R™ is defined as

%[l 0 = max [x;]
1<i1<n
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Matrix Norm: A number associated with a matrix that is often requires in analysis of Matrix based algorithm.

Matrix norms give some notion of “size” of a matrix or “distance” between the two matrices.

Let 4, B € R™", Similar to vector norm, matrix norm also satisfies the following properties

(i) ||A]l >0forA =+ 0and||A|]|]=0ford =0
(i) [[AA]l = 1A[l[A]ll, VAeR
(iii) ||1A+ Bl < [[A]l + || B

Examples: * The Frobenius norm

172
IAllF = (Z|aij| )

L,j

e The max norm

|A||max = max |aij|
L]
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VECTOR AND MATRIX NORMS

Def. For any vector norm, we can also define a corresponding matrix norm (called induced matrix norm ) as

| Ax||
|A]| = max
x#0  |[x]|
Def. We say that a matrix norm |[|-|| is consistent (compatible) with a vector norm if
1Ax|| < [|Allllx]l, Vx € R"

Def. We say that a matrix norm ||-|| is sub-multiplicative if V 4, B € R™*"

IABI < [|AlllIBI]

Note: All norms do not satisfy compatibility and sub-multiplicative properties. However, all induced matrix
norms and Frobenius norm satisfy these properties.

. _ B S b S | 1 _[2 2 _[2
Example: Consider  ||Allmax = Hl!’?;!X |al]|, A=B= ll 1 X = ll] = AB = [2 5 and Ax = [2]
|AB||lmax = 2 > 1 = ||Allmaxl|Bllmax  (Not sub-multiplicative )

|Ax|[max = 2 > 1 = ||Allmax llx|[max (Not compatible )
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X
Simplified forms of induced matrix norm: |A]| = max ”||x||”
The matrix norm induced by the vector 1-norm:
n n n n n n n n n
laxly = ) 140 = ) 1> a| <) ) layl byl =) > laylly] <’ (m,gxz ] ) ]
i=1 i=1 ]:1 =1 _]:1 ]=1 i=1 = =

n n n n
lAxly
||Ax||1s<m,gx2|aik|>2|x,-| :»||Ax||1s(m,ngmiu)uxul = "o < max ) Jad
. » : 1 .
=1 Jj=1 1=1 =1

Dr. Jitendra Kumar — IIT ROPAR 31




n
Ax Ax
We have lAx]ly < (m}gxz |ail > Al = max” 1

X 0
Il £, 240 T,

To prove ||A|; = max Yivq|aix|, we must find an X € R" for which

A n
|AX ||,
= max E la|
k -
=1

1%1l4

Suppose that the largest absolute column sum is attained in the mth column of A.

Set® = ey, Then||%|l; = 1and Az = |%2m

n n n

1A%l 1A,
= |aim| = max ) |aj| = ||A|l; = max = max ) |a] (Column Sum Norm)
Z, L S T R
1= L= L=

Izlly
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Simplified forms of induced matrix norm

The matrix norm induced by the vector 1-norm:

n
1Al = m],?lxz jas/] (Column Sum Norm)
i=1

The matrix norm induced by the vector co-norm:

n

Al = m.axz|aij| (Row Sum Norm)
l —
]=

The matrix norm induced by the vector 2-norm:

IA]l, = /p(ATA) = /A ax of ATA (Spectral Norm)

Note: The number p(A) = max{|A|: 1 is the eigenvalue of A} is called the spectral radius of A.
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ILL-CONDITIONED LINEAR SYSTEMS Ax = b

A system of linear equations is said to ill-conditioned when some small perturbation in the

system can produce large changes in the exact solution.
1. Inaccurate Right Hand Side (b)

Let Ax=b and AX = (b+ 6b)

I =0l _ IlA7* ]
Ixll = lxll

= AF —x)=6b=>x%—x=A"16b = ||G—2)| < |47 I6b]] =

1 _ il

Again Ax =b = ||bll = [[Ax|| = Ibll < [|Allllx|l = T

6Bl & -0l 1B
Bl = e S AR
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X — )
1. Inaccurate Right Hand Side (b) Ix = 2 < k(4) ”||b||”

x|l

If the system is well conditioned (k(A) =~ 1), small change in b can have only a small effect on
the solution. However, in the case of ill-conditioning (k(A) > 1), small change in b may lead

to large error in the solution.

IG =l _ _ [k(AD]*  [164]
Kl = (= l4-134D) [IA]

2. Inaccurate Matrix Entries (A)

3. Inaccurate (4) & (b)

I -l k(4) \s4ll  lisbl
= S(1—||A-16A||><"()||A|| ||b||>
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linear System of Linear Equations

Recall the problem:

0.835x; + 0.667x, = 0.168 0.835x; + 0.667x, = 0.168
Exact Solution: (1, —1) Exact Solution: (—666, 834)

Condition Number of the coefficient matrix (k;) : 1.7543 x 10°
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Questions Raised

v'  System is very sensitive

» Residual is small but the approximation is weird
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Relation between Residual and Relative Error

System: Ax =b Residual: r = b — AX Some approximation of x: X
_ _ 1|4l
Ax = b = ||b|| = [[Ax|| = [Ibll < [[Allllx]| = +— <
Il = 1Bl
r=b—A% =r=Ax—-Ax=Ax—-%) =>x-%=A4"r =|x—%x| =47
N _ lx =%l _NIA7H I A~ Al7 ] [l — x| Il
= |lx = x|l < l[A7HllI7|l = < =

< = — < k(A)—
0 B 1] = e

If the system is well conditioned (k(A) = 1), small residual can be used to estimate error.

However, in the case of ill-conditioned system, residual may not estimate the actual error.
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linear System of Linear Equations

0.835x; + 0.667x, = 0.168 0.835x; + 0.667x, = 0.168
Exact Solution: (1, —1) Exact Solution: (—666, 834)
GS Approximation: (—0.6711, 1.0920) GS Approximation: (—30.0389, —37.357)
Residuals: —5.81 x 1075 [—2.4750 x 107
—2.0704 x 107> —1.0000 x 10~%

b — Ax®)

ky :1.7543 x 106
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Key Takeaways

Importance of Rounding Off Errors

* Rounding errors are inevitable in numerical computations due to finite precision.
* Even small errors can accumulate in iterative calculations or long sequences of operations.

* Understanding rounding errors helps in designing stable numerical algorithms.

Sensitivity of Calculations = Function Evaluation

* Sensitivity measures how changes in input affect the output.

e Large condition number—> small input errors can produce large output errors.

Sensitivity of Linear Systems

* High condition number - system is ill-conditioned - small errors in b or A = large errors in x.

* For asystem Ax = b: solution’s sensitivity depends on condition number of matrix A.

Understanding rounding errors and system sensitivity both are crucial for reliable numerical computations
and for designing robust algorithms.
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