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Relative and Absolute Errors

Let ෤𝑥 be an approximation of value 𝑥. Then the absolute and relatives errors are defined as 

𝐸𝑎𝑏𝑠 = |𝑥 − ෤𝑥| 𝐸𝑟𝑒𝑙 =
𝑥− ෤𝑥

𝑥

Example 1: 𝑥 = 1016 and ෤𝑥 = 1.001 × 1016

𝐸𝑎𝑏𝑠 = 0.001 × 1016 = 1013

𝐸𝑟𝑒𝑙 =
1013

1016
= 10−3

Example 2: 𝑥 = 102 and ෤𝑥 = 1.001 × 102

𝐸𝑎𝑏𝑠 = 0.001 × 102 = 0.1

𝐸𝑟𝑒𝑙 =
0.1

102
= 10−3

Example 3: 𝑥 = 1000 and ෤𝑥 = 1000.1

𝐸𝑎𝑏𝑠 = 0.1

𝐸𝑟𝑒𝑙 =
0.1

1000
= 10−4 = 0.01%

Example 4: 𝑥 = 1 and ෤𝑥 = 1.1

𝐸𝑎𝑏𝑠 = 0.1

𝐸𝑟𝑒𝑙 =
0.1

1
= 0.1 = 10%
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SOURCE OF ERRORS

Round-off Error Truncation Error

Computer’s inability to 
represent numbers exactly 

(chopping and rounding)

Approximations due to 
discretization or truncation 

of Series 
unavoidable error Controllable

Errors in Mathematical ModelError in initial data/parameters

Physical Problem Mathematical Model Numerical Approximation

SOURCES OF ERRORS IN COMPUTATION
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Round-off Error

Illustrative Example: Consider 𝑥 = 1.23456 and  𝑦 = 1.22222

If 𝑥 and 𝑦 and approximated by their first three digit, i.e., ො𝑥 = 1.23 and ො𝑦 = 1.22

ො𝑥 − ො𝑦 = 1.23 − 1.22 = 0.01

Note that error in 𝑥 and 𝑦 was less than 1%.

Compute error in 𝑥 − 𝑦:

0.01234 − 0.01

0.01234
≈ 20%
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1. Failure of U.S. Anti-Missile Defense System (Gulf War 1991)

➢ US missile defense system tried to stop incoming Scud missiles.

➢ Small rounding error in representing 0.1 seconds in computer memory.

➢ Over several hours, the error added up (to ~0.34 seconds) → system miscalculated missile position (~500 meters).

➢ Impact: Missed missile hit a barracks → 28 soldiers killed.

Real-World Disasters Due to Rounding Errors

Takeaway: Even tiny numerical errors in computers can accumulate and cause serious real-world problems, 

from safety disasters to financial losses.

2. Vancouver Stock Exchange Bug (1982)

➢ Software used to calculate stock prices had rounding errors.

➢ Magnitude of errors: Index was truncated to three decimal places for each trade. 

➢ Over hundreds of thousands of trades, the small errors added up to several thousand dollars lost per trader

➢ Impact: Financial discrepancies across the exchange → losses for investors and trading firms.
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Let 𝑥 = 108

Evaluate
1

𝑥2 + 1 − 𝑥

Let 𝑥 = 2, 𝑦 = 2, z = 2 ∗ 10−15

Evaluate (𝑦 + 𝑧) − 𝑥

• Accumulation of roundoff error while subtracting numbers of similar magnitude

• Accumulation of roundoff error while adding large and small (in magnitude) number

• If 𝑦 ≪ 1 then 𝑥/𝑦 may accumulate large roundoff error

• If 𝑦 ≫ 1 then 𝑥𝑦 may accumulate large roundoff error 

• Overflow/underflow: number is too large or too small to fit into the floating point system 

Round-off Error

≈ 6% error
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Let 𝑥 = 108

Instead of Evaluating
1

𝑥2 + 1 − 𝑥

Let 𝑥 = 2, 𝑦 = 2, z = 2 ∗ 10−15

Instead of Evaluating (𝑦 + 𝑧) − 𝑥

Evaluate 𝑦 − 𝑥 +z

Evaluate 𝑥2 + 1 + 𝑥 ≈ 2 × 108

Round-off Error (Some Fixes)
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Truncation Error

Results from approximation of an exact mathematical expression, e.g., truncation of infinite series, 
Discretization of ODE/PDE, Finite Differences, etc.

Example: Taylor’s polynomials are approximations of some functions

𝑓 𝑥 = 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 +⋯+
𝑓 𝑛 𝑥0

𝑛!
𝑥 − 𝑥0

𝑛 + 𝑅𝑛

Remainder: 𝑅𝑛 =
𝑓 𝑛+1 𝜉

𝑛 + 1 !
𝑥 − 𝑥0

𝑛+1, 𝑥0< 𝜉 < 𝑥 Truncation Error

Taylor’s Formula Taylor’s Polynomial
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𝑃𝑛 𝑥 = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) +
𝑓′′ 𝑥0
2!

(𝑥 − 𝑥0)
2+⋯+

𝑓 𝑛 𝑥0
𝑛!

(𝑥 − 𝑥0)
𝑛

Taylor’s 
Polynomial 
of order 𝒏

Example: Taylor’s Polynomial of 𝑒𝑥 around 𝑥 = 0.

𝑃0 𝑥 = 1;

𝑃2 𝑥 = 1 + 𝑥 +
𝑥2

2
;

P3 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6

𝑃4 𝑥 = 1 + 𝑥 +
𝑥

2

2
+
𝑥

3

6
+
𝑥

4

24
;

𝑃5 𝑥 = 1 + 𝑥 +
𝑥

2

2
+
𝑥

3

6
+
𝑥

4

24
+

𝑥
5

120

𝑃1 𝑥 = 1 + 𝑥;

𝑒𝑥

𝑃0 𝑃0

𝑒𝑥

𝑃1

𝑃0

𝑃1

𝑒𝑥

𝑃3

𝑃0

𝑃1

𝑃3

𝑒𝑥
𝑃5

Truncation Error
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Combined effect of Truncation error and Round-off error

𝑦 = 𝑥4 − 𝑥3 − 𝑥2 − 𝑥 + 1;

𝑑𝑦

𝑑𝑥
= 4𝑥3 − 3𝑥2 − 2𝑥 − 1;

Consider 

Its derivative 

Approximation of the derivative:

𝑑𝑦

𝑑𝑥
≈
𝑦 𝑥 + ℎ − 𝑦(𝑥)

ℎ

Forward difference 

≈
෤𝑦 𝑥 + ℎ − ෤𝑦(𝑥)

ℎ

round off errorTruncation error 

Total error 𝑥 = 10

Total Error =
𝑑𝑦

𝑑𝑥
−

෤𝑦 𝑥 + ℎ − ෤𝑦 𝑥

ℎ
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Using Taylor’s theorem, we have

𝑦 𝑥𝑖+1 = 𝑦 𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖 𝑦
′ 𝑥𝑖 +

𝑥 − 𝑥𝑖
2

2
𝑓′′(𝜉) ⇒ 𝑦′ 𝑥𝑖 =

𝑦 𝑥𝑖+1 − 𝑦 𝑥𝑖
ℎ

−
ℎ

2
𝑓′′(𝜉)

In computer, let 𝑦 𝑥 be approximated (round off error) by ෤𝑦 𝑥 , i.e.,  

𝑦 𝑥𝑖+1 = ෤𝑦(𝑥𝑖+1) + 𝑒𝑖+1 & 𝑦 𝑥𝑖 = ෤𝑦(𝑥𝑖) + 𝑒𝑖

⇒ 𝑦′ 𝑥𝑖 =
෤𝑦 𝑥𝑖+1 − ෤𝑦 𝑥𝑖

ℎ
+

𝑒𝑖+1 − 𝑒𝑖
ℎ

−
ℎ

2
𝑓′′(𝜉)

True 
Value

Finite Difference
Approximation

Round off
Error

Assuming 𝑒𝑖 ≤ 𝜖, for all 𝑖 and 𝑓′′ 𝜉 ≤ 𝑀, then the Total Error is given by

⇒ 𝑦′ 𝑥𝑖 −
෤𝑦 𝑥𝑖+1 − ෤𝑦 𝑥𝑖

ℎ
≤

2𝜖

ℎ
+

𝑀

2
ℎ

Truncation
Error

Combined effect of Truncation error and Round-off error
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Condition Number of a Function 

Consider 𝑓 𝑥 =
𝑥

1 − 𝑥

𝑥 𝒇(𝒙)

0.97 32.3333

0.98 49.0000

−0.97 −0.4924

−0.98 −0.4949

About 1% error in 𝑥 leads to more than 51% error in 𝑓(𝑥)

About 1% error in 𝑥 leads to more than 0.50% error in 𝑓(𝑥)

The condition number of a function measures how much the output value of the function can change for a 

small change in the input argument.

Sensitivity of Mathematical Models 
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Condition Number of a Function 

The condition number of evaluation of 𝑓 at the point 𝑥 is a measure of the ratio of the relative change in a 
function 𝑓 (𝑥) to the relative change in 𝑥. 

Let ෤𝑥 be an approximation of 𝑥. (OR ෤𝑥 is a perturbed value of 𝑥)

We want to see the effect of the discrepancy between ෤𝑥 and 𝑥 on the value of the function.

Using Taylor’s series (Mean value theorem): 𝑓 𝑥 = 𝑓 ෤𝑥 + 𝑥 − ෤𝑥 𝑓′(𝜉)

𝑓 𝑥 − 𝑓 ෤𝑥

𝑓 𝑥
=
𝑓′ 𝜉

𝑓 𝑥
𝑥 − ෤𝑥 ⇒

𝑓 𝑥 − 𝑓 ෤𝑥

𝑓 𝑥
≈

𝑥𝑓′ 𝑥

𝑓 𝑥

𝑥 − ෤𝑥

𝑥

Change in 
output 

condition 
number 

change in 
input 

Sensitivity of Mathematical Models 



15Dr. Jitendra Kumar – IIT ROPAR

Sensitivity of Mathematical Models 

Condition Number =
𝑥𝑓′ 𝑥

𝑓 𝑥

𝑓 𝑥 =
𝑥

1 − 𝑥

=
1

1 − 𝑥

Condition Number ቚ
𝑥=0.98

=
1

1 − 𝑥
≈ 50

𝑥 𝒇(𝒙)

0.97 32.3333

0.98 49.0000

−0.97 −0.4924

−0.98 −0.4949

About 1% error in 𝑥 leads to more than 51% error in 𝑓(𝑥)

About 1% error in 𝑥 leads to more than 0.50% error in 𝑓(𝑥)

Condition Number ቚ
𝑥=−0.98

=
1

1 − 𝑥
≈ 0.50

𝑓 𝑥 − 𝑓 ෤𝑥

𝑓 𝑥
≈

𝑥𝑓′ 𝑥

𝑓 𝑥

𝑥 − ෤𝑥

𝑥

Change in 
output 

condition 
number 

change in 
input 
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Example: Evaluate 𝑓 𝑥 = 𝑥2 + 1 − 𝑥 for 𝑥 = 108

Condition number of 𝑓: ≈ −1 Problem is well conditioned

Computing steps: 1. Compute 𝑥2 + 1 =: 𝑡1 Well conditioned 𝑘 ≈ 2

2. Compute 𝑡1 =: 𝑡2 Well conditioned 𝑘 ≈
1

2

3. Compute 𝑡2 − 𝑥 Ill conditioned 𝑘 ≫ 1

Problem is well-conditioned but the obvious algorithm used to evaluate it is unstable.

Different algorithm must be used for evaluating the original expression.

𝑓 𝑥 = 𝑥2 + 1 − 𝑥 =
1

𝑥2 + 1 + 𝑥
3. Compute 𝑡2 + 𝑥 ≔ 𝑡3 Well conditioned 𝑘 ≈

1

2

4. Compute
1

𝑡3
Well conditioned 𝑘 ≈ 1
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Takeaways

Rounding errors are unavoidable → but understanding them prevents catastrophic mistakes.

Conditioning tells us about the problem:

• Well-conditioned → input errors don’t grow much.

• Ill-conditioned → small input errors get magnified.

Stability tells us about the algorithm:

• Stable → controls rounding/perturbation errors.

• Unstable → errors grow during computation.

Key relationship:

• Well-conditioned problem + stable algorithm → reliable results.

• Ill-conditioned problem → unreliable results, regardless of algorithm.

Preconditioning: transform a hard (ill-conditioned) system into an easier (well-conditioned one).

Numerical reliability comes from
understanding both the problem
(conditioning) and the method
(stability).

Good algorithms can control errors,
but they cannot change the nature of
the problem itself.
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Matrix Conditioning and System of Linear Equations

ITERATIVE METHOD

A method for solving the linear system 𝐴𝑥 = 𝑏 is called iterative if it is a numerical method computing a sequence 

of approximate solutions 𝑥(𝑘) that converges to the exact solution 𝑥 as the number of iterations 𝑘 goes to ∞.

An iterative method is said to converge if for any choice of initial vector 𝑥(0) ∈ ℝ𝑛, the sequence of 

approximate solutions 𝑥(𝑘) converges to the exact solution 𝑥, i.e., lim
𝑘→∞

𝑥(𝑘) = 𝑥.

DEFINITION (Convergence of an Iterative Method):

DEFINITION (Residual/Error):

We call the vector 𝑟𝑘 = 𝑏 − 𝐴𝑥 𝑘 residual (respectively error 𝑒𝑘 = 𝑥(𝑘) − 𝑥) at the 𝑘th iteration.

REMARK: 

In general, we have no knowledge of 𝑒𝑘 because the exact solution 𝑥 is unknown.  However, it is easy to compute 

the residual 𝑟𝑘 , so the convergence is usually dedicated on the residual in practice. 
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Gauss Seidel Method

𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
𝑏𝑖 −෍

𝑗<𝑖

𝑎𝑖𝑗𝑥𝑗
(𝑘+1)

−෍

𝑗>𝑖

𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑥(𝑘+1) = − 𝐷 + 𝐿 −1𝑈𝑥 𝑘 + (𝐷 + 𝐿)−1𝑏

𝐿: Lower triangular part of A

𝑈

𝐿

𝑑11

𝑑𝑛𝑛

𝐴 =

𝐷 ∶ Diagonal entries of 𝐴

U : Upper triangular part of A

𝐴𝑛×𝑛𝑥𝑛×1 = 𝑏𝑛×1Consider a system of linear equations

𝑥(𝑘+1) = −𝐷−1 𝐿 + 𝑈 𝑥(𝑘) + 𝐷−1𝑏

𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
𝑏𝑖 − ෍

𝑗=1,𝑗≠𝑖

𝑛

𝑎𝑖𝑗𝑥𝑗
(𝑘)

Jacobi Iteration Method

Iterative Methods for Solving System of Linear Equations
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Convergence of Iterative Methods

OR

The iterative methods converge if and only if the spectral radius (largest absolute eigenvalue) of 𝐺 is less 

than 1, i.e., 𝜌 𝐺 < 1.

Necessary and Sufficient Conditions:

The iterative methods converge for any initial guess if and only if all the eigenvalues of the iteration 

matrix 𝐺 have absolute value less than 𝟏.

𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐌𝐞𝐭𝐡𝐨𝐝𝐬: 𝑥(𝑘+1) = 𝐺𝑥 𝑘 + 𝐻𝑏
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Convergence Theorems (Iterative Methods for Solving 𝑨𝒙 = 𝒃)

Sufficient Conditions :

2. If 𝐴 is strictly diagonally dominant by rows (or by columns) then the Jacobi and Gauss-Seidel methods 

converge for any initial guess.

1. If any norm of iteration matrix 𝑮 is less than 1, i.e. 𝐺 < 1, then the iterative methods converge 

for any initial guess.
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Problem 1: Solve the system of linear equations: 0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.067

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.59760479 −1

3 1 1.000009

4 −0.597611983 −1

5 1 1.00001801

6 −0.597619176 −1

⋮ ⋮ ⋮

9996 −0.633954765 −1

9997 1 1.0455148

9998 −0.633962121 −1

9999 1 1.04552401

10000 −0.633969478 −1

Jacobi

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.5976 1.000009

3 −0.59761 1.000018

4 −0.59762 1.000027

5 −0.59763 1.000036

6 −0.59763 1.000045

⋮ ⋮ ⋮

9996 −0.67113 1.092056

9997 −0.67114 1.092065

9998 −0.67115 1.092075

9999 −0.67115 1.092084

10000 −0.67116 1.092094

Gauss-Seidel
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Problem 2: Solve the system of linear equations: 0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 = 0.066

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.5976 −1.00376

3 1.003003 0.99625

4 −0.59461 −1.00752

5 1.006006 0.992499

6 −0.59161 −1.01128

⋮ ⋮ ⋮

9996 14.54216 −20.0024

9997 16.17919 −17.9569

9998 14.54522 −20.0063

9999 16.18226 −17.9607

10000 14.54829 −20.0101

Jacobi

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.5976 0.99625

3 −0.59461 0.992499

4 −0.59161 0.988749

5 −0.58862 0.984998

6 −0.58562 0.981248

⋮ ⋮ ⋮

9996 30.0264 −37.3413

9997 30.02953 −37.3452

9998 30.03266 −37.3492

9999 30.0358 −37.3531

10000 30.03893 −37.357

Gauss-Seidel
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Problem 3: Solve the system of linear equations: 0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.265𝑥2 = 0.068

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.5976 −1

3 1 1.007556

4 −0.60364 −1

5 1 1.015141

6 −0.6097 −1

⋮ ⋮ ⋮

2996 1 3.05𝐸 + 08

2997 −2.4𝐸 + 08 −1

2998 1 3.06𝐸 + 08

2999 −2.4𝐸 + 08 −1

3000 1 3.08𝐸 + 08

Jacobi

Iterations 𝒙𝟏 𝒙𝟐

1 1 1

2 −0.5976 0.992518

3 −0.59163 0.985065

4 −0.58567 0.977639

5 −0.57974 0.970241

6 −0.57383 0.962871

⋮ ⋮ ⋮

2996 −3.72𝐸 + 16 4.68𝐸 + 16

2997 −3.74𝐸 + 16 4.70𝐸 + 16

2998 −3.75𝐸 + 16 4.71𝐸 + 16

2999 −3.76𝐸 + 16 4.73𝐸 + 16

3000 −3.78𝐸 + 16 4.75𝐸 + 16

Gauss-Seidel
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Key Observations:

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.067

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.066

Exact Solution: (1, −1) Exact Solution: (−666, 834)

1. System is very sensitive

• How to measure?

2. Convergence of iterative schemes

• How to check? 

Underlined System of Linear Equations

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.265𝑥2 = 0.068

𝐺𝑆: (−3.78𝐸 + 16,4.75𝐸 + 16)

𝐽: (1,3.08𝐸 + 08)

Exact Solution: (1, −1)

𝜌 𝐴 =1.0019

𝜌 𝐴 =1.0038
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Key Observations:

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.067

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.066

GS Approximation: (−0.6711, 1.0920) GS Approximation: (−30.0389, −37.357)

Underlined System of Linear Equations

Residuals: 

𝑏 − 𝐴𝑥 𝑘

−5.81 × 10−5

−2.0704 × 10−5
−2.4750 × 10−6

−1.0000 × 10−4

Exact Solution: (1, −1) Exact Solution: (−666, 834)

3. Residuals are small but the approximation is weird

• Where is the problem? 



28Dr. Jitendra Kumar – IIT ROPAR

Vector Norm: Let 𝑥, 𝑦 ∈ ℝ𝑛. The norm of a vector is number that measures “size” or “length” of a vector. It satisfies

(i)  𝑥 > 0 for 𝑥 ≠ 0 and 𝑥 = 0 for 𝑥 = 0

(ii)  𝜆𝑥 = 𝜆 𝑥 , ∀ 𝜆 ∈ ℝ

(iii)  𝑥 + 𝑦 ≤ 𝑥 + 𝑦

Examples: • The 𝑝-norm of the vector 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛
𝑇 ∈ ℝ𝑛 is defined as

𝑥 𝑝 = ෍

𝑖=1

𝑛

𝑥𝑖
𝑝

1
𝑝

• The ∞-norm of the vector 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛
𝑇 ∈ ℝ𝑛 is defined as

𝑥 ∞ = max
1≤𝑖≤𝑛

𝑥𝑖

(𝑝 = 2: Euclidean Norm)
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Matrix Norm:

Let 𝐴, 𝐵 ∈ ℝ𝑛×𝑛. Similar to vector norm, matrix norm also satisfies the following properties

(i)  𝐴 > 0 for 𝐴 ≠ 0 and 𝐴 = 0 for 𝐴 = 0

(ii)  𝜆𝐴 = 𝜆 𝐴 , ∀ 𝜆 ∈ ℝ

(iii)  𝐴 + 𝐵 ≤ 𝐴 + 𝐵

Examples: • The 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 norm

𝐴 𝐹 = ෍

𝑖,𝑗

𝑎𝑖𝑗
2

1/2

• The 𝑚𝑎𝑥 norm

𝐴 max = max
𝑖,𝑗

|𝑎𝑖𝑗|

A number associated with a matrix that is often requires in analysis of Matrix based algorithm.  

Matrix norms give some notion of “size” of a matrix or “distance” between the two matrices. 
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VECTOR AND MATRIX NORMS

Def. For any vector norm, we can also define a corresponding matrix norm (called induced matrix norm ) as

𝐴 = max
𝑥≠0

𝐴𝑥

𝑥

Def. We say that a matrix norm ⋅ is consistent (compatible) with a vector norm if  

𝐴𝑥 ≤ 𝐴 𝑥 , ∀𝑥 ∈ ℝ𝑛

Def. We say that a matrix norm ⋅ is sub-multiplicative if ∀ 𝐴, 𝐵 ∈ ℝ𝑛×𝑛

𝐴𝐵 ≤ 𝐴 𝐵

Note: All norms do not satisfy compatibility and sub-multiplicative properties. However, all induced matrix 
norms and Frobenius norm satisfy these properties.  

Example: Consider 𝐴 max = max
𝑖,𝑗

𝑎𝑖𝑗 , 𝐴 = 𝐵 =
1 1
1 1

, 𝑥 =
1
1

⇒ 𝐴𝐵 =
2 2
2 2

and 𝐴𝑥 =
2
2

𝐴𝐵 max = 2 > 1 = 𝐴 max 𝐵 max (Not sub-multiplicative )

𝐴𝑥 max = 2 > 1 = 𝐴 max 𝑥 max (Not compatible )
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𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐢𝐞𝐝 𝐟𝐨𝐫𝐦𝐬 𝐨𝐟 𝐢𝐧𝐝𝐮𝐜𝐞𝐝𝐦𝐚𝐭𝐫𝐢𝐱 𝐧𝐨𝐫𝐦: 𝐴 = max
𝑥≠0

𝐴𝑥

𝑥

The matrix norm induced by the vector 1-norm:

𝐴𝑥 1 =෍

𝑖=1

𝑛

| 𝐴𝑥 𝑖| =෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≤෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

|𝑎𝑖𝑗| 𝑥𝑗 =෍

𝑗=1

𝑛

෍

𝑖=1

𝑛

|𝑎𝑖𝑗| 𝑥𝑗 ≤෍

𝑗=1

𝑛

max
𝑘

෍

𝑖=1

𝑛

|𝑎𝑖𝑘| 𝑥𝑗

𝐴𝑥 1 ≤ max
𝑘

෍

𝑖=1

𝑛

|𝑎𝑖𝑘| ෍

𝑗=1

𝑛

𝑥𝑗 ⟹ 𝐴𝑥 1 ≤ max
𝑘

෍

𝑖=1

𝑛

|𝑎𝑖𝑘| 𝑥 1 ⟹
𝐴𝑥 1

𝑥 1
≤ max

𝑘
෍

𝑖=1

𝑛

|𝑎𝑖𝑘|
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We have
𝐴𝑥 1

𝑥 1
≤ max

𝑘
෍

𝑖=1

𝑛

|𝑎𝑖𝑘|

To prove 𝐴 1 = max
𝑘

σ𝑖=1
𝑛 |𝑎𝑖𝑘|, we must find an ො𝑥 ∈ ℝ𝑛 for which  

𝐴ො𝑥 1

ො𝑥 1
= max

𝑘
෍

𝑖=1

𝑛

|𝑎𝑖𝑘|

Suppose that the largest absolute column sum is attained in the 𝑚th column of 𝐴. 

Set ො𝑥 = 𝑒𝑚. Then ො𝑥 1 = 1 and 𝐴ො𝑥 =

𝑎1𝑚
𝑎2𝑚
⋮

𝑎𝑛𝑚

𝐴ො𝑥 1

ො𝑥 1
=෍

𝑖=1

𝑛

|𝑎𝑖𝑚| = max
𝑘

෍

𝑖=1

𝑛

|𝑎𝑖𝑘| ⟹ 𝐴 1 = max
𝑥≠0

𝐴𝑥 1

𝑥 1
= max

𝑘
෍

𝑖=1

𝑛

|𝑎𝑖𝑘| (Column Sum Norm)

𝐴 1 = max
𝑥≠0

𝐴𝑥 1

𝑥 1
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The matrix norm induced by the vector 1-norm:

𝐴 1 = max
𝑗

෍

𝑖=1

𝑛

|𝑎𝑖𝑗|

The matrix norm induced by the vector ∞-norm:

𝐴 ∞ = max
𝑖

෍

𝑗=1

𝑛

𝑎𝑖𝑗

(𝐂𝐨𝐥𝐮𝐦𝐧 𝐒𝐮𝐦 𝐍𝐨𝐫𝐦)

(𝐑𝐨𝐰 𝐒𝐮𝐦𝐍𝐨𝐫𝐦)

The matrix norm induced by the vector 𝟐-norm:

𝐴 2 = 𝜌 𝐴𝑇𝐴 = 𝜆max of 𝐴
𝑇𝐴 (𝐒𝐩𝐞𝐜𝐭𝐫𝐚𝐥 𝐍𝐨𝐫𝐦)

Note: The number 𝜌 𝐴 = max 𝜆 : 𝜆 is the eigenvalue of 𝐴 is called the spectral radius of 𝐴. 

𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐢𝐞𝐝 𝐟𝐨𝐫𝐦𝐬 𝐨𝐟 𝐢𝐧𝐝𝐮𝐜𝐞𝐝 𝐦𝐚𝐭𝐫𝐢𝐱 𝐧𝐨𝐫𝐦
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ILL-CONDITIONED LINEAR SYSTEMS 𝑨𝒙 = 𝒃

A system of linear equations is said to ill-conditioned when some small perturbation in the 

system can produce large changes in the exact solution. 

1. Inaccurate Right Hand Side (𝒃)

Let 𝐴𝑥 = 𝑏 and 𝐴෤𝑥 = (𝑏 + 𝛿𝑏)

⟹ 𝐴(෤𝑥 − 𝑥) = 𝛿𝑏 ⟹ ෤𝑥 − 𝑥 ≤ 𝐴−1 𝛿𝑏⟹ ෤𝑥 − 𝑥 = 𝐴−1 𝛿𝑏 ⟹
෤𝑥 − 𝑥

𝑥
≤

𝐴−1 𝛿𝑏

𝑥

Again 𝐴𝑥 = 𝑏 ⟹ 𝑏 = 𝐴𝑥 ⟹ 𝑏 ≤ 𝐴 𝑥 ⟹
1

𝑥
≤

𝐴

𝑏

⟹
෤𝑥 − 𝑥

𝑥
≤ 𝐴−1 𝐴

𝛿𝑏

𝑏
⟹

෤𝑥 − 𝑥

𝑥
≤ 𝑘 𝐴

𝛿𝑏

𝑏
Condition Number: 𝑘 𝐴 = 𝐴 𝐴−1
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1. Inaccurate Right Hand Side (𝒃)
෤𝑥 − 𝑥

𝑥
≤ 𝑘 𝐴

𝛿𝑏

𝑏

If the system is well conditioned 𝑘 𝐴 ≈ 1 , small change in 𝑏 can have only a small effect on

the solution. However, in the case of ill-conditioning 𝑘 𝐴 ≫ 1 , small change in 𝑏 may lead

to large error in the solution.

2. Inaccurate Matrix Entries (𝑨)
෤𝑥 − 𝑥

𝑥
≤

𝑘 𝐴 2

1 − 𝐴−1𝛿𝐴

𝛿𝐴

𝐴

3. Inaccurate (𝑨) & (𝒃)
෤𝑥 − 𝑥

𝑥
≤

𝑘 𝐴

1 − 𝐴−1𝛿𝐴
𝑘 𝐴

𝛿𝐴

𝐴
+

𝛿𝑏

𝑏
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linear System of Linear Equations

Condition Number of the coefficient matrix (𝑘1) : 1.7543 × 106

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.067

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.066

Exact Solution: (1, −1) Exact Solution: (−666, 834)

Recall the problem:
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✓ System is very sensitive

• How to measure?

➢ Residual is small but the approximation is weird

• Where is the problem? 

Questions Raised
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Relation between Residual and Relative Error

System: 𝐴𝑥 = 𝑏 Residual: 𝑟 = 𝑏 − 𝐴෤𝑥 𝑆ome approximation of 𝑥: ෤𝑥

𝐴𝑥 = 𝑏 ⟹ 𝑏 = 𝐴𝑥 ⟹ 𝑏 ≤ 𝐴 𝑥 ⟹
1

𝑥
≤

𝐴

𝑏

𝑟 = 𝑏 − 𝐴෤𝑥 ⟹ 𝑟 = 𝐴𝑥 − 𝐴෤𝑥 = 𝐴 𝑥 − ෤𝑥 ⟹ 𝑥 − ෤𝑥 = 𝐴−1𝑟 ⟹ 𝑥 − ෤𝑥 = 𝐴−1𝑟

⟹ 𝑥 − ෤𝑥 ≤ 𝐴−1 𝑟 ⟹
𝑥 − ෤𝑥

𝑥
≤

𝐴−1 𝑟

𝑥
=

𝐴−1 𝐴 𝑟

𝑏
⟹

𝑥 − ෤𝑥

𝑥
≤ 𝑘(𝐴)

𝑟

𝑏

If the system is well conditioned 𝑘 𝐴 ≈ 1 , small residual can be used to estimate error.

However, in the case of ill-conditioned system, residual may not estimate the actual error.
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linear System of Linear Equations

𝑘1 : 1.7543 × 106

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.067

0.835𝑥1 + 0.667𝑥2 = 0.168

0.333𝑥1 + 0.266𝑥2 =0.066

GS Approximation: (−0.6711, 1.0920) GS Approximation: (−30.0389, −37.357)

Residuals: 

𝑏 − 𝐴𝑥 𝑘

−5.81 × 10−5

−2.0704 × 10−5
−2.4750 × 10−6

−1.0000 × 10−4

Exact Solution: (1, −1) Exact Solution: (−666, 834)
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Understanding rounding errors and system sensitivity both are crucial for reliable numerical computations
and for designing robust algorithms.

Importance of Rounding Off Errors

• Rounding errors are inevitable in numerical computations due to finite precision.

• Even small errors can accumulate in iterative calculations or long sequences of operations.

• Understanding rounding errors helps in designing stable numerical algorithms.

Sensitivity of Calculations → Function Evaluation

• Sensitivity measures how changes in input affect the output.

• Large condition number→ small input errors can produce large output errors.

Sensitivity of Linear Systems

• High condition number → system is ill-conditioned → small errors in 𝑏 or 𝐴 → large errors in 𝑥.

• For a system 𝐴𝑥 = 𝑏: solution’s sensitivity depends on condition number of matrix 𝑨.

Key Takeaways
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Thank You 


