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RECAP – SINGLE STEP METHODS FOR SOLVING IVPs

Consider 
𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 ; 𝑦 𝑡0 = 𝑦0, 𝑡 ∈ [𝑡0, 𝑏]

Assume that the solution exists and is unique, i.e., 𝑓 is uniformly 

Lipschitz continuous w.r.t. the second argument. 

Numerical Solution:

𝑡

𝑦(𝑡)

𝑡0

= 𝑢0

𝑡1 𝑡2

𝑢1

𝑢2

𝑦1

𝑦2

𝑦𝑁−1

𝑢𝑁−1
𝑦𝑁

= 𝑡𝑁ℎ
𝑡𝑁−1

𝑢𝑛 ≈ 𝑦 𝑡𝑛 = 𝑦𝑛

𝑦0

𝑏

𝑢𝑁

ℎ
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𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1ℎ

slope =
𝑢𝑛+1 − 𝑢𝑛

ℎ 𝑢𝑛+1 = 𝑢𝑛 + ℎ × slope

𝑦𝑛

𝑦𝑛+1

Numerical Method

Consider IVP:
𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 ; 𝑦 𝑡0 = 𝑦0, 𝑡 ∈ [𝑡0, 𝑏]

Key Idea of the Single Step Methods

𝑢𝑛+1 = 𝑢𝑛 + ℎ × 𝜙(𝑡𝑛, 𝑢𝑛, 𝑡𝑛+1, 𝑢𝑛+1, 𝑓, ℎ) How to get 𝜙?

Different approximations of 𝜙 leads to different numerical methods. 
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Single Step Methods

𝑢𝑛+1 = 𝑢𝑛 + ℎ × 𝜙(𝑡𝑛, 𝑢𝑛, 𝑓, ℎ) 𝑢𝑛+1 = 𝑢𝑛 + ℎ × 𝜙(𝑡𝑛, 𝑢𝑛, 𝑡𝑛+1, 𝑢𝑛+1, 𝑓, ℎ)

Explicit Implicit

𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1

ℎ

𝑦𝑛

𝑦𝑛+1
slope: 𝑓 𝑡𝑛, 𝑦𝑛

slope: 𝑓 𝑡, 𝑢𝑛

Euler ∶ 𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓(𝑡𝑛, 𝑢𝑛)

𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1

ℎ

𝑦𝑛

𝑦𝑛+1
slope: 𝑓 𝑡𝑛+1, 𝑦𝑛+1

slope: 𝑓 𝑡𝑛+1, 𝑢𝑛+1

Backward Euler ∶ 𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑢𝑛+1)

RECAPITULATION –SINGLE STEP METHOD

(𝜙 is computed in terms of 𝑢𝑛) (𝜙 depends on 𝑢𝑛+1 itself through 𝑓)
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RECAPITULATION –SINGLE STEP METHOD

𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1

ℎ

𝑦𝑛

𝑦𝑛+1slope: 𝑓 𝑡𝑛, 𝑦𝑛 =≈ 𝑓(𝑡𝑛, 𝑢𝑛)

slope: 𝑓 𝑡𝑛+1, 𝑦𝑛+1 ≈ 𝑓 𝑡𝑛+1, 𝑢𝑛+1

𝑡𝑛 +
ℎ

2

slope: 𝑓 𝑡𝑛 +
ℎ

2
, 𝑦 𝑡𝑛 +

ℎ

2
≈?

Backward Euler

Forward Euler

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓 𝑡𝑛 +
ℎ

2
, 𝑢𝑛 +

ℎ

2
𝑓𝑛

Explicit Midpoint Method

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓 𝑡𝑛 +
ℎ

2
,
𝑢𝑛 + 𝑢𝑛+1

2

Implicit Midpoint Method

𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝑓 𝑡𝑛, 𝑢𝑛 + 𝑓(𝑡𝑛+1, 𝑢𝑛+1)

Implicit Trapezoidal Method

𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝑓 𝑡𝑛, 𝑢𝑛 + 𝑓(𝑡𝑛+1, 𝑢𝑛 + ℎ𝑓(𝑡𝑛, 𝑢𝑛))

Euler-Cauchy Method (Heun’s Method)  (Improved Euler)
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RECAPITULATION –SINGLE STEP METHOD

Runge-Kutta Methods

𝑢𝑗+1 = 𝑢𝑗 + ℎ weighted average of slopes on the given interval

Explicit Methods (𝒏-stage): 

𝑘1 = 𝑓 𝑡𝑗 , 𝑢𝑗

𝑘2 = 𝑓 𝑡𝑗 + 𝑐2ℎ, 𝑢𝑗 + ℎ𝑎21𝑘1

𝑘𝑛 = 𝑓 𝑡𝑗 + 𝑐𝑛ℎ, 𝑢𝑗 + ℎ𝑎𝑛1𝑘1 + ℎ𝑎𝑛2𝑘2 +⋯+ ℎ𝑎𝑛𝑛−1𝑘𝑛−1

⋮

𝑘3 = 𝑓 𝑡𝑗 + 𝑐3ℎ, 𝑢𝑗 + ℎ𝑎31𝑘1 + ℎ𝑎32𝑘2

𝑢𝑗+1 = 𝑢𝑗 + ℎ 𝑤1𝑘1 +𝑤2𝑘2 +⋯+𝑤𝑛𝑘𝑛

𝑘1 = 𝑓(𝑡𝑗 , 𝑢𝑗)

𝑘2 = 𝑓(𝑡𝑗 + ℎ, 𝑢𝑗 + ℎ𝑘1)

𝑢𝑗+1 = 𝑢𝑗 +
ℎ

2
𝑓 𝑡𝑗 , 𝑢𝑗 + 𝑓(𝑡𝑗+1, 𝑢𝑗 + ℎ𝑓(𝑡𝑗 , 𝑢𝑗))

Euler-Cauchy Method (Heun’s Method)

𝑢𝑗+1 = 𝑢𝑗 + ℎ
𝑘1 + 𝑘2

2

It can be rewritten as
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CLASSICAL RUNGE-KUTTA METHOD

𝑘1 = 𝑓 𝑡𝑗 , 𝑢𝑗 𝑘2 = 𝑓 𝑡𝑗 +
ℎ

2
, 𝑢𝑗 +

ℎ

2
𝑘1

𝑢𝑗+1 = 𝑢𝑗 +
ℎ

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

𝑘3 = 𝑓 𝑡𝑗 +
ℎ

2
, 𝑢𝑗 +

ℎ

2
𝑘2 𝑘4 = 𝑓 𝑡𝑗 + ℎ, 𝑢𝑗 + ℎ𝑘3

Why Classical Runge-Kutta method of order 4 is popular?

Minimum number of function evaluation (MNFE) versus order

ORDER 2 3 4 5 6 7 8 ⋯

MNFE 2 3 4 6 7 9 11 ⋯

Remark: The order of an 𝑠-stage explicit method (RK) cannot be greater than 𝑠.

Also, there does not exist a 𝑠-stage method (explicit RK) with order 𝑠 if 𝑠 ≥ 5.
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CONVERGENCE ANALYSIS

A method is said to be convergent if 𝑢𝑛 − 𝑦𝑛 → 0, ∀𝑛 as ℎ → 0.

Moreover, it is said to be convergence of order 𝑝 (≥ 1) if there exists 𝐶 > 0 such that

𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1

ℎ

𝑦𝑛

𝑦𝑛+1

𝑒𝑛

𝑒𝑛+1

𝜏𝑛+1𝑢𝑛+1
∗

Propagation of Errors
(𝑒𝑛, rounding error etc.)

Local Truncation Error

𝑢𝑛+1 = 𝑢𝑛 + ℎ × 𝜙(𝑡𝑛, 𝑢𝑛, 𝑓(𝑡𝑛, 𝑢𝑛), ℎ)

L.T.E.: Single Step Numerical Method

𝜏𝑛+1 = 𝑦𝑛+1 − 𝑢𝑛+1
∗

𝜏𝑛+1 = 𝑦𝑛+1 − 𝑦𝑛 − ℎ𝜙(𝑡𝑛, 𝑦𝑛, 𝑓(𝑡𝑛, 𝑦𝑛), ℎ)

Consistency: The method is said to be consistent if
1

ℎ
𝜏𝑛+1 → 0, ∀𝑛 as ℎ → 0

Moreover, it is said to be convergence of order 𝑝(≥ 1) if 

there exists 𝐶 > 0 such that 
1

ℎ
𝜏𝑛+1 ≤ 𝐶ℎ𝑝, ∀𝑛 as ℎ → 0.

𝑢𝑛 − 𝑦𝑛 ≤ 𝐶ℎ𝑝, ∀𝑛 as ℎ → 0 ⟺ 𝑢𝑛 − 𝑦𝑛 = 𝒪(ℎ𝑝)

Convergence is the study of the Global error (𝑒𝑛)
and consistency is the study of the local error (𝜏𝑛).   
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CONSISTENCY

𝜏𝑛+1 = 𝑦𝑛+1 − 𝑦𝑛 − ℎ𝑓(𝑡𝑛, 𝑦𝑛)

𝜏𝑛+1 = 𝑦𝑛 + ℎ𝑦′ 𝑡𝑛 +
ℎ2

2
𝑦′′(𝑡𝑛) − 𝑦𝑛 − ℎ𝑓(𝑡𝑛, 𝑦𝑛)

𝜏𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑡𝑛, 𝑦𝑛 +
ℎ2

2
𝑦′′ 𝑡𝑛 +⋯− 𝑦𝑛 − ℎ𝑓(𝑡𝑛, 𝑦𝑛)

⇒
𝜏𝑛+1
ℎ

= 𝒪(ℎ)

Backward Euler MethodEuler Method:

𝜏𝑛+1
ℎ

= 𝒪(ℎ)

Explicit Midpoint Method

Implicit Midpoint Method

Implicit Trapezoidal Method

Euler-Cauchy Method

𝜏𝑛+1
ℎ

= 𝒪(ℎ2)The calculation of consistency is essentially based on the application of 
Taylor series expansion.

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓(𝑡𝑛, 𝑢𝑛)
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CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓 𝑡𝑛, 𝑢𝑛 ; 𝑢0 = 𝑦0

⇒ 𝑒𝑛+1 = 𝑦𝑛+1 − 𝑢𝑛+1; 𝑛 = 0, 1, 2, …

𝑡𝑛 𝑡𝑛+1

𝑢𝑛

𝑢𝑛+1

𝑦𝑛

𝑦𝑛+1

𝑒𝑛

𝑒𝑛+1

𝜏𝑛+1𝑢𝑛+1
∗

⇒ 𝑒𝑛+1 = 𝑢𝑛+1
∗ − 𝑢𝑛+1 + 𝜏𝑛+1

⇒ 𝑒𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑡𝑛, 𝑦𝑛 − 𝑢𝑛 − ℎ𝑓(𝑡𝑛, 𝑢𝑛) + 𝜏𝑛+1

⇒ 𝑒𝑛+1 = 𝑒𝑛 + ℎ 𝑓 𝑡𝑛, 𝑦𝑛 − 𝑓 𝑡𝑛, 𝑢𝑛 + 𝜏𝑛+1

Using Lipchitz condition on 𝑓, i.e., 𝑓 𝑡𝑛, 𝑦𝑛 − 𝑓 𝑡𝑛, 𝑢𝑛 ≤ 𝐿|𝑦𝑛 − 𝑢𝑛| and |𝜏𝑛+1| ≤ 𝐶ℎ2

⇒ |𝑒𝑛+1| ≤ 𝑒𝑛 + ℎ 𝑓 𝑡𝑛, 𝑦𝑛 − 𝑓 𝑡𝑛, 𝑢𝑛 + |𝜏𝑛+1|

⇒ |𝑒𝑛+1| ≤ 𝐶ℎ2 + (1 + 𝐿ℎ) 𝑒𝑛

By recursion 

⇒ |𝑒𝑛+1| ≤ 𝐶ℎ2 + 1 + 𝐿ℎ 𝐶ℎ2 + 1 + 𝐿ℎ 𝑒𝑛−1 = 𝐶ℎ2 + 𝐶ℎ2 1 + 𝐿ℎ + 1 + 𝐿ℎ 2|𝑒𝑛−1|
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CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

𝑒𝑛+1 ≤ 𝐶ℎ2 + 𝐶ℎ2 1 + 𝐿ℎ + 1 + 𝐿ℎ 2|𝑒𝑛−1|

⇒ 𝑒𝑛+1 ≤ 𝐶ℎ2 + 𝐶ℎ2 1 + 𝐿ℎ + 𝐶ℎ2 1 + 𝐿ℎ 2 +⋯+ 1 + 𝐿ℎ 𝑛 𝑒1

⇒ 𝑒𝑛+1 ≤ 𝐶ℎ2 + 𝐶ℎ2 1 + 𝐿ℎ + 𝐶ℎ2 1 + 𝐿ℎ 2 + 1 + 𝐿ℎ 3|𝑒𝑛−2|

𝑡0 𝑡1

𝑢1

𝑦0 = 𝑢0

𝑦1

𝑒1= 𝜏1

⇒ 𝑒𝑛+1 ≤ 𝐶ℎ2 + 𝐶ℎ2 1 + 𝐿ℎ + 𝐶ℎ2 1 + 𝐿ℎ 2 +⋯+ 𝐶ℎ2 1 + 𝐿ℎ 𝑛

⇒ 𝑒𝑛+1 ≤
1 + ℎ𝐿 𝑛+1 − 1

1 + ℎ𝐿 − 1
𝐶ℎ2

⇒ 𝑒𝑛+1 ≤
1 + ℎ𝐿 𝑛+1 − 1

𝐿
𝐶ℎ Using 1 + ℎ𝐿 ≤ 𝑒ℎ𝐿

𝑒𝑛+1 ≤
𝑒 𝑛+1 ℎ𝐿 − 1

𝐿
𝐶ℎ

Note that:   𝑡1 = 𝑡0 + ℎ

𝑡2 = 𝑡0 + 2ℎ

𝑡𝑛+1 = 𝑡0 + (𝑛 + 1)ℎ

⇒ 𝑒𝑛+1 ≤
𝑒 𝑡𝑛+1−𝑡0 𝐿 − 1

𝐿
𝐶ℎ; ∀𝑛

The total error tends to zero with the same order as consistency error 
𝜏𝑛+1

ℎ
= 𝒪(ℎ)
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CONVERGENCE ANALYSIS: EULER METHOD (ROUNDING ERRORS)

ത𝑢𝑛+1 = ത𝑢𝑛 + ℎ𝑓 𝑡𝑛, ത𝑢𝑛 + 𝜉𝑛; ത𝑢0 = 𝑦0 + 𝜉0

⇒ 𝑦𝑛+1 − ത𝑢𝑛+1 ≤ 𝑒 𝑡𝑛+1−𝑡0 𝐿 𝜉0 +
1

𝐿
𝐶ℎ +

𝜉

ℎ
; 𝜉 = max

1≤𝑖≤𝑛+1
𝜉𝑖

⇒ 𝑒𝑛+1 ≤ 𝐴ℎ +
𝐵

ℎ

Step size (ℎ)

Er
ro

rs

ERROR vs. Step Size (In general)ERROR vs. Step Size (Euler)

Presence of rounding error does not
allow to conclude that 𝑒 → 0 as ℎ → 0.

ℎopt



13Dr. Jitendra Kumar – IIT ROPAR

Direct convergence proof is difficult specifically for more complicated methods.  

Alternatively we can study convergence through consistency and stability. 

Stability of the IVP:

𝑦′ = 𝑓 𝑡, 𝑦 ; 𝑦 𝑡0 = 𝑦0, 𝑡 ∈ 𝐼 (1)

The IVP (1) is said to be stable on 𝐼 if for any perturbation 𝛿0, 𝛿 𝑡 stasifying

Perturbed IVP: 𝑧′ = 𝑓 𝑡, 𝑧 + 𝛿 𝑡 ; 𝑧 𝑡0 = 𝑦0 + 𝛿0, 𝑡 ∈ 𝐼 (2)

𝛿0 < 𝜖, 𝛿(𝑡) < 𝜖, ∀𝑡 ∈ 𝐼

There exists 𝐶 > 0 such that

𝑦 𝑡 − 𝑧 𝑡 < 𝐶𝜖

The constant 𝐶 depends in general on the problem data 𝑡0, 𝑦0 and 𝑓 but not on 𝜖. 

CONVERGENCE ANALYSIS
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Zero Stability of One-Step Methods (Analogous to the Stability of IVP):

Single Step Method:  𝑢𝑛+1 = 𝑢𝑛 + ℎ𝜙 𝑡𝑛, 𝑢𝑛, 𝑓(𝑡𝑛, 𝑢𝑛); ℎ , 𝑢0 = 𝑦0 (1)

Single Step Method (perturbed):  𝑧𝑛+1 = 𝑧𝑛 + ℎ[𝜙 𝑡𝑛, 𝑧𝑛, 𝑓 𝑡𝑛, 𝑧𝑛 ; ℎ + 𝛿𝑛+1], 𝑧0 = 𝑦0 + 𝛿0

The numerical method (1) is said to be zero stable if ∃ ℎ𝑜 > 0 and 𝐶 > 0 such that ∀ℎ ∈ 0, ℎ0 ,  ∀𝜖 > 0,  

if 𝛿𝑛 < 𝜖, for all 0 ≤ 𝑛 ≤ 𝑁ℎ, then 𝑧𝑛 − 𝑢𝑛 < 𝐶𝜖, 0 ≤ 𝑛 ≤ 𝑁ℎ

Both constant 𝐶 and ℎ0 may depend on problem’s data set 𝑡0, 𝑇, 𝑦𝑜, and 𝑓 but not on 𝜖.

This notion of the stability deals with the behaviour of the numerical methods in the limit case ℎ → 0.

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 ; 𝑦 𝑡0 = 𝑦0, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]

CONVERGENCE ANALYSIS – Explicit One-Step Method
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CONVERGENCE ANALYSIS – Explicit One-Step Method

If the increment function 𝜙 is Lipschitz continuous with respect to the second argument, with content 𝐿

independent of ℎ and of the nodes 𝑡𝑛 ∈ 𝑡0, 𝑡0 + 𝑇 , i.e.,

𝜙 𝑡𝑛, 𝑢𝑛, 𝑓 𝑡𝑛, 𝑢𝑛 ; ℎ − 𝜙 𝑡𝑛, 𝑧𝑛, 𝑓 𝑡𝑛, 𝑧𝑛 ; ℎ ≤ 𝐿 𝑢𝑛 − 𝑧𝑛 , 0 ≤ 𝑛 ≤ 𝑁ℎ

Then the method (1) is zero stable. 

Zero Stability of One-Step Method:  𝑢𝑛+1 = 𝑢𝑛 + ℎ𝜙 𝑡𝑛, 𝑢𝑛, 𝑓(𝑡𝑛, 𝑢𝑛); ℎ , 𝑢0 = 𝑦0 (1)

Setting 𝑤𝑛+1 = 𝑧𝑛+1 − 𝑢𝑛+1, from equation (1) and (2) we obtain:

𝑤𝑛+1 = 𝑤𝑛 + ℎ 𝜙 𝑡𝑛, 𝑢𝑛, 𝑓 𝑡𝑛, 𝑢𝑛 ; ℎ − 𝜙 𝑡𝑛, 𝑧𝑛, 𝑓 𝑡𝑛, 𝑧𝑛 ; ℎ + ℎ𝛿𝑛+1

𝑧𝑛+1 = 𝑧𝑛 + ℎ 𝜙 𝑡𝑛, 𝑧𝑛, 𝑓 𝑡𝑛, 𝑧𝑛 ; ℎ + 𝛿𝑛+1 , 𝑧0 = 𝑦0 + 𝛿0 (2)
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CONVERGENCE ANALYSIS – Explicit One-Step Method

⇒ 𝑤𝑛 = 𝑤𝑛−1 + ℎ 𝜙 𝑡𝑛−1, 𝑢𝑛−1, 𝑓 𝑡𝑛−1, 𝑢𝑛−1 ; ℎ − 𝜙 𝑡𝑛−1, 𝑧𝑛−1, 𝑓 𝑡𝑛−1, 𝑧𝑛−1 ; ℎ + ℎ𝛿𝑛

Substituting 𝑤𝑛−1 with the above relation again recursively we obtain:

𝑤𝑛 = 𝑤0 + ℎ෍

𝑗=1

𝑛

𝛿𝑗 + ℎ෍

𝑗=0

𝑛−1

𝜙 𝑡𝑗 , 𝑢𝑗 , 𝑓 𝑡𝑗 , 𝑢𝑗 ; ℎ − 𝜙 𝑡𝑗 , 𝑧𝑗 , 𝑓 𝑡𝑗 , 𝑧𝑗 ; ℎ

𝑤𝑛+1 = 𝑤𝑛 + ℎ 𝜙 𝑡𝑛, 𝑢𝑛, 𝑓 𝑡𝑛, 𝑢𝑛 ; ℎ − 𝜙 𝑡𝑛, 𝑧𝑛, 𝑓 𝑡𝑛, 𝑧𝑛 ; ℎ + ℎ𝛿𝑛+1

|𝑤𝑛| ≤ |𝛿0| + ℎ෍

𝑗=0

𝑛−1

|𝛿𝑗+1| + ℎ𝐿෍

𝑗=0

𝑛−1

|𝑤𝑗| , 1 ≤ 𝑛 ≤ 𝑁ℎ

Using Lipschitz continuity of 𝜙

𝑤0 = 𝑧0 − 𝑢0 = 𝛿0
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|𝑤𝑛| ≤ 𝛿0 + ℎ෍

𝑗=0

𝑛−1

|𝛿𝑗+1| exp 𝑛ℎ𝐿

Using Gronwall’s Lemma and 𝛿𝑛 < 𝜖, we get  

|𝑤𝑛| ≤ 1 + 𝑛ℎ 𝜖 exp 𝑛ℎ𝐿

≤ 𝑇 ≤ 𝑇 = 𝐶

Gronwall’s Lemma (Discrete) Let 𝑘𝑛 be a nonnegative sequence and 𝜙𝑛 a sequence such that

𝑤0 ≤ 𝑔0 and 𝑤𝑛 ≤ (𝑔0 + 𝑐𝑛) +෍

𝑗=0

𝑛−1

𝑘𝑠𝑤𝑠 , 𝑛 ≥ 1

If 𝑔0 ≥ 0, 𝑐𝑛 ≥ 0, then 𝑤𝑛 ≤ 𝑔0 + 𝑐𝑛 exp ෍

𝑗=0

𝑛−1

𝑘𝑠 , 𝑛 ≥ 1

CONVERGENCE ANALYSIS – Explicit One-Step Method

≤ 1 + 𝑇 exp 𝑇𝐿 𝜖

|𝑤𝑛| ≤ |𝛿0| + ℎ෍

𝑗=0

𝑛−1

|𝛿𝑗+1| + ℎ𝐿෍

𝑗=0

𝑛−1

|𝑤𝑗|

Hence the method (1) is zero stable
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Convergence Theorem (Lax-Richtmyer Theorem)

If the numerical method is stable then 

If 𝑦0 − 𝑢0 ≤ 𝐶1ℎ
𝑝 = 𝒪 ℎ𝑝 and

𝜏

ℎ
= 𝒪 ℎ𝑝 (consistency order 𝑝) then 𝑦𝑛 − 𝑢𝑛 = 𝒪 ℎ𝑝

Consistency + Stability ⇒ Convergence

𝑦𝑛 − 𝑢𝑛 ≤ 𝑦0 − 𝑢0 + 𝑇
𝜏

ℎ
𝑒𝑇𝐿, 1 ≤ 𝑛 ≤ 𝑁ℎ, 𝜏 = max

0≤𝑛≤𝑁ℎ−1

𝜏𝑛+1(ℎ)

A numerical method is convergent of order p if it is consistent of order p and zero-stable.

CONVERGENCE ANALYSIS – Numerical Methods

Sketch of the proof: 𝑢𝑛+1 = 𝑢𝑛 + ℎ𝜙 𝑡𝑛, 𝑢𝑛, 𝑓(𝑡𝑛, 𝑢𝑛); ℎ , 𝑢0 = 𝑦0 (1)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝜙 𝑡𝑛, 𝑦𝑛, 𝑓 𝑡𝑛, 𝑦𝑛 ; ℎ + 𝜏𝑛+1 (2)

Proceed as before for the case of zero stability. 



19Dr. Jitendra Kumar – IIT ROPAR

CONVERGENCE ANALYSIS – Problem with Zero Stability

Consider the following problem

𝑑𝑦

𝑑𝑡
= 𝜆𝑦; 𝑦 0 = 1 Exact Solution: 𝑦(𝑡) = 𝑒𝜆𝑡

Apply the Euler Method

𝑢𝑛+1 = 𝑢𝑛 + 𝜆ℎ𝑢𝑛 ⇒ 𝑢𝑛+1 = (1 + 𝜆ℎ)𝑢𝑛

⇒ 𝑢𝑛 = 1 + 𝜆ℎ 𝑛𝑢0

⇒ 𝑢𝑛 = exp(ln 1 + 𝜆ℎ 𝑛)

given 𝑢0 = 1

⇒ 𝑢𝑛 = lim
𝑛→∞

exp 𝑡𝑛𝜆
ln 1 +

𝑡𝑛𝜆
𝑛

𝑡𝑛𝜆
𝑛

ℎ =
𝑡𝑛
𝑛

Let 𝑛 → ∞, ℎ → 0 such that 𝑛ℎ = 𝑡𝑛

⇒ 𝑢𝑛 = exp(𝜆𝑡𝑛)

But in practice ℎ ↛ 0

Lets take 𝜆 = −10 & ℎ = 0.4

⇒ 𝑢𝑛 = −3 𝑛

The solution blow-up and oscillates

We observe that the numerical solution 
will decay if

1 + 𝜆ℎ < 1 ⇒ −2 < 𝜆ℎ < 0

Remark. Zero-stability, while necessary for
convergence, is not sufficient for practical
purposes. In real computations, one often requires
stronger notions of stability (such as absolute
stability, A-stability, or L-stability) to ensure reliable
performance of the numerical method
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Model Equation:

ABSOLUTE STABILITY

Let us consider the following IVP:

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 ; 𝑦 𝑡0 = 𝑦0, 𝑡 ∈ [𝑡0, 𝑏]

The behavior of solution of above IVP in the neighborhood of any point ( ҧ𝑡, ത𝑦) can be predicted by the linearized form of DE.

The function 𝑓 𝑡, 𝑦 can be linearized in the neighborhood of the point ( ҧ𝑡, ത𝑦) by expending it into the Taylor series as

𝑓 𝑡, 𝑦 = 𝑓 ҧ𝑡, ത𝑦 + 𝑡 − ҧ𝑡 𝑓𝑡 ҧ𝑡, ത𝑦 + 𝑦 − ത𝑦 𝑓𝑦 ҧ𝑡, ത𝑦 + higher order terms

Define: 𝜇 = 𝑓𝑡 ҧ𝑡, ത𝑦 , 𝜆 = 𝑓𝑦 ҧ𝑡, ത𝑦 , 𝑐 = 𝑓 ҧ𝑡, ത𝑦 − ത𝑦𝜆 + 𝑡 − ҧ𝑡 𝜇

The given ode can be written as 𝑦′ ≈ 𝜆𝑦 + 𝑐

Substituting 𝜔 = 𝑦 +
𝑐

𝜆
+

𝜇

𝜆2

𝑦′ −
𝜇

𝜆
≈ 𝜆 𝜔 −

𝑐

𝜆
−

𝜇

𝜆2
+ 𝑐 ⇒ 𝜔′ = 𝜆𝜔 (model equation) Exact solution:𝜔 = 𝑘𝑒𝜆𝑡

For practical purposes (similar to lab scale test), it is sufficient to check stability for the linear equation 𝜔′ = 𝜆𝜔.  
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Absolute stability is typically analysed using the test equation 𝑦′ = 𝜆𝑦, since it captures several essential

features of more general differential equations.

Absolute Stability: A numerical method for approximating 

𝑦′ 𝑡 = 𝜆𝑦; 𝑡 > 0; Re 𝜆 < 0 ,   𝑦 0 = 1

is absolutely stable if  𝑢𝑛 → 0 as  𝑡𝑛 → ∞

Region of absolute stability = 𝜆ℎ ∈ ℂ: the method is absolutely stable at 𝜆ℎ

Abolute Stability  ⟹ Zero Stability

For broader applicability, 𝜆 is taken to be complex, 𝜆 = 𝜆𝑅 + 𝑖𝜆𝐼, with the restriction 𝜆𝑅 ≤ 0 ​to ensure that

the exact solution remains non-growing (i.e., stable) in the continuous case.

ABSOLUTE STABILITY
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Please note that a single step method when applied to the test equation 𝑦′ 𝑡 = 𝜆𝑦 leads to  

𝑢𝑛+1 = 𝐸 𝜆ℎ 𝑢𝑛; 𝑛 = 0, 1, 2, …

We call single step method absolutely stable if 𝐸 𝜆ℎ < 1

Absolute Stability of Euler Method:

Applying the Euler method on the test equation:

𝑢𝑛+1 = 𝑢𝑛 + ℎ 𝜆𝑢𝑛 ⇒ 𝑢𝑛+1 = (1 + 𝜆ℎ)𝑢𝑛

തℎ = 𝑥 + 𝑖𝑦

1 + 𝜆ℎ = 1 + 𝑥 + 𝑖𝑦 = 1 + 𝑥 2 + 𝑦2

For Absolute stability, we require 

1 + 𝑥 2 + 𝑦2 < 1⇒ 1+ 𝑥 2 + 𝑦2 < 1

Re(തℎ)

Im(തℎ)

(−2, 0)

Region of Absolute Stability

Region of Absolute Stability: തℎ ∈ ℂ: തℎ + 1 < 1

ABSOLUTE STABILITY
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Absolute Stability of Backward Euler Method: 𝑢𝑛+1 = 𝑢𝑛 + ℎ 𝑓𝑛+1

⇒ 𝑢𝑛+1 = 𝑢𝑛 + ℎ 𝜆𝑢𝑛+1 ⇒ 𝑢𝑛+1 =
1

(1 − 𝜆ℎ)
𝑢𝑛

⇒ 𝐸(𝜆ℎ) =
1

(1 − 𝜆ℎ)

(𝜆ℎ = തℎ = 𝑥 + 𝑖𝑦)

For Absolute stability, we require 

1

1 − 𝜆ℎ
< 1 ⇒ 1 − 𝜆ℎ > 1

⇒ 1 − 𝑥 − 𝑖𝑦 > 1 ⇒ 1 − 𝑥 2 + 𝑦2 > 1

The region of absolute stability is the entire complex plan except a disk centred at (1, 0) with radius 1.

Backward Euler Method is unconditionally absolutely stable.

Re(തℎ)

Im(തℎ)

Region of 
Absolute Stability

(1, 0)

A method is called A-stable if its region of absolute stability includes the entire left half of the complex plane.

Region of Absolute Stability: തℎ ∈ ℂ: തℎ − 1 > 1

ABSOLUTE STABILITY
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Suppose we solve 𝑦′ 𝑡 = 5𝑦 𝑡 , 𝑦(0) = 1 using backward Euler method

Re(തℎ)

Im(തℎ)

Region of 
Absolute Stability

(1, 0)

If we pick any 5ℎ > 2 ⇒ ℎ > 2/5

Since 𝜆ℎ is from the region of stability, the solution

will decay and tends to 0 as 𝑡 tends to ∞.

However, the exact solution of the problem tends to infinity.  

Why this is not a contradiction of A-stability?

Backward Euler is A-stable because for Re 𝜆 < 0 (decaying continuous problems), its numerical solution will also

decay (and not blow up). A-stability says nothing about problems with Re 𝜆 > 0 (growing problems): the method

can (and here does) artificially damp them if the step is too large.

ABSOLUTE STABILITY – AN OBSERVATION

(Absolute stability region)
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𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝑓 𝑡𝑛, 𝑢𝑛 + 𝑓(𝑡𝑛+1, 𝑢𝑛+1)Absolute Stability of Trapezoidal Method: 

⇒ 𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝜆𝑢𝑛 + 𝜆𝑢𝑛+1

⇒ 𝐸(തℎ) =

1 +
തℎ
2

1 −
തℎ
2

For Absolute stability, we require 

⇒ 1 −
തℎ

2
𝑢𝑛+1 = 1 +

തℎ

2
𝑢𝑛 ⇒ 𝑢𝑛+1 =

1 +
തℎ
2

1 −
തℎ
2

𝑢𝑛

1 +
തℎ

2
< 1 −

തℎ

2

⇒ 2 + തℎ < 2 − തℎ
Re(തℎ)

Im(തℎ)

Region of 
Absolute Stability

⇔ Re തℎ < 0

Implicit Trapezoidal Method is A stable.

Region of Absolute Stability: തℎ ∈ ℂ: Re തℎ < 0
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𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝑓 𝑡𝑛, 𝑢𝑛 + 𝑓(𝑡𝑛+1, 𝑢𝑛 + ℎ𝑓(𝑡𝑛, 𝑢𝑛))

Absolute Stability of Euler-Cauchy Method (Heun’s Method)  

⇒ 𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
λ𝑢𝑛 + λ𝑢𝑛 1 + 𝜆ℎ

⇒ 𝑢𝑛+1 = 1 +
𝜆ℎ

2
+
𝜆ℎ

2
+
𝜆2ℎ2

2
𝑢𝑛

⇒ 𝑢𝑛+1 = 1 + 𝜆ℎ +
𝜆2ℎ2

2
𝑢𝑛

Region of Absolute Stability: തℎ ∈ ℂ: 1 + തℎ +
തℎ2

2
< 1

⇒ 𝐸(തℎ) = 1 + തℎ +
തℎ2

2

Re(തℎ)

Im(തℎ)

Region of 
Absolute 
Stability

(−2, 0)
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1 + 𝜆ℎ +
𝜆2ℎ2

2
< 1

For real λ < 0:

⇒ −1 < 1 + 𝜆ℎ +
𝜆2ℎ2

2
< 1

⇒ −1 <
1

2
2 + 2𝜆ℎ + 𝜆2ℎ2 < 1

⇒ −2 < 1 + 1 + 𝜆ℎ 2 < 2

always satisfied

⇒ 1 + 1 + 𝜆ℎ 2 < 2 ⇒ 1 + 𝜆ℎ 2 < 1 ⇒ −1 < 1 + 𝜆ℎ < 1 ⇒ −2 < 𝜆ℎ < 0

Same as Euler Method ⇒ 𝜆ℎ ∈ (−2, 0)

Absolute Stability of Euler-Cauchy Method (Heun’s Method)  
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Re(തℎ)

Im(തℎ)

(−2, 0)

Re(തℎ)

Im(തℎ)

(−2, 0)

Region of Absolute Stability of Explicit Methods

Euler Method Euler-Cauchy Method 



29Dr. Jitendra Kumar – IIT ROPAR

Re(തℎ)

Im(തℎ)

Region of 
Absolute Stability

(1, 0)
Re(തℎ)

Im(തℎ)

Region of 
Absolute Stability

Region of Absolute Stability of Implicit Methods

Backward Euler Method Trapezoidal Method 
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Consider solution of a stiff IVP: 𝑦′ 𝑡 = −1000𝑦; 𝑦(0) = 1

If we want to solve it using explicit method, e.g., Euler Method then ℎ < 0.0001.

Therefore we need to use an implicit method.

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓 𝑡𝑛+1, 𝑢𝑛+1

Implicit Midpoint Method

𝑢𝑛+1 = 𝑢𝑛 +
ℎ

2
𝑓 𝑡𝑛, 𝑢𝑛 + 𝑓(𝑡𝑛+1, 𝑢𝑛+1)

Implicit Trapezoidal Method

Problems with Trapezoidal Method

ℎ = 0.01
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L-Stability

A numerical method for solving ODEs is called L-stable if

1. It is A-stable (its region of absolute stability includes the entire left half of the complex plane), and

2. Its stability function 𝐸 തℎ satisfies lim
ഥℎ→−∞

𝐸 തℎ = 0

Note: L-stability adds the property that very stiff components decay to zero rapidly.

This eliminates spurious oscillations and makes the method especially effective for stiff problems.

⇒ 𝐸(𝜆ℎ) =
1

(1 − 𝜆ℎ)
⇒ 𝐸(𝜆ℎ) → 0 as 𝜆ℎ → −∞

Backward Euler Method: 

Trapezoidal Method: 

⇒ 𝐸(𝜆ℎ) =
(1 + 𝜆ℎ/2)

(1 − 𝜆ℎ/2)
⇒ 𝐸 𝜆ℎ → −1 as 𝜆ℎ → −∞

L-stable

Only A-stable and not L-stable
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➢ Implicit one-step methods (examined so far) → unconditionally absolutely stable.

➢ Explicit schemes (examined so far) → conditionally absolutely stable.

➢ This is not a general rule. Some implicit schemes are unstable or only conditionally stable. However, 

no explicit scheme is unconditionally absolutely stable.

CONCLUDING REMARKS
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Thank You 


