

NUMERICAL SOLUTIONS OF ODES: CONVERGENCE AND STABILITY ANALYSIS

Dr. Jitendra Kumar

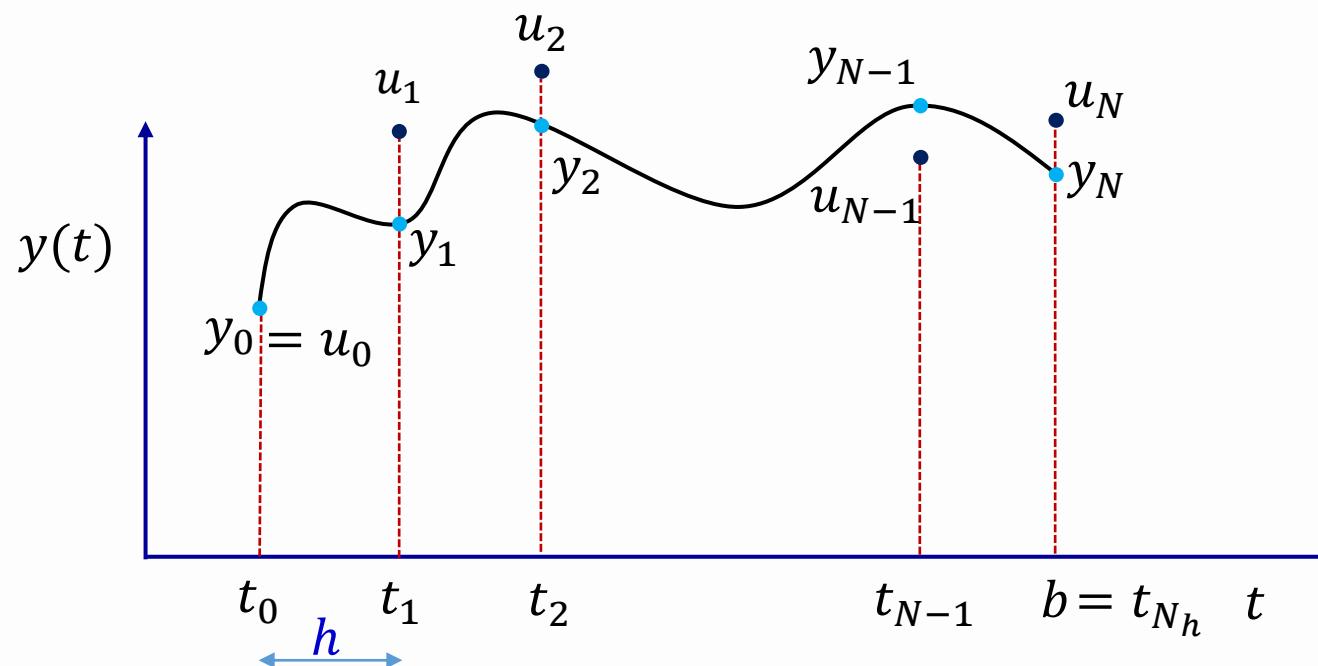
Professor
Department of Mathematics
Indian Institute of Technology ROPAR

Consider $\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0, t \in [t_0, b]$

Assume that the solution exists and is unique, i.e., f is uniformly Lipschitz continuous w.r.t. the second argument.

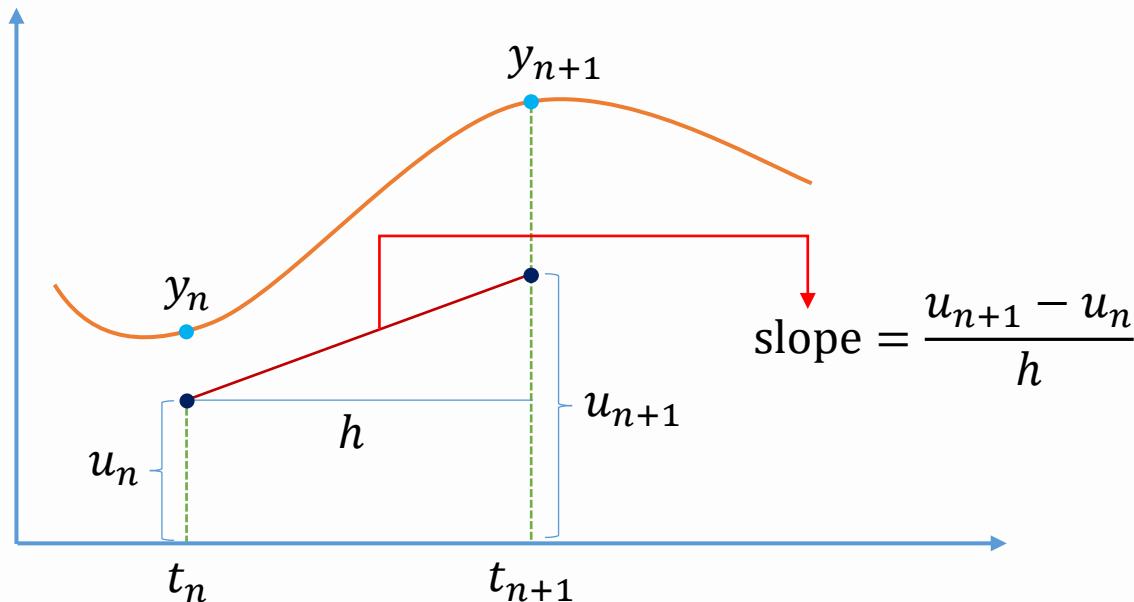
Numerical Solution:

$$u_n \approx y(t_n) = y_n$$



Key Idea of the Single Step Methods

Consider IVP: $\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0, t \in [t_0, b]$



Numerical Method

$$u_{n+1} = u_n + h \times \text{slope}$$

$$u_{n+1} = u_n + h \times \phi(t_n, u_n, t_{n+1}, u_{n+1}, f, h)$$

How to get ϕ ?

Different approximations of ϕ leads to different numerical methods.

RECAPITULATION –SINGLE STEP METHOD

Single Step Methods

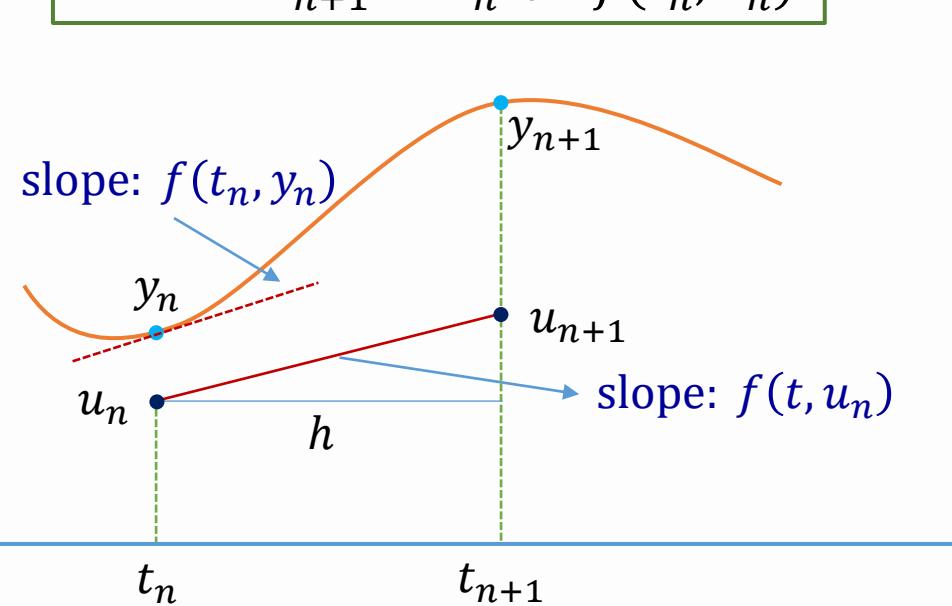
Explicit (ϕ is computed in terms of u_n)

$$u_{n+1} = u_n + h \times \phi(t_n, u_n, f, h)$$

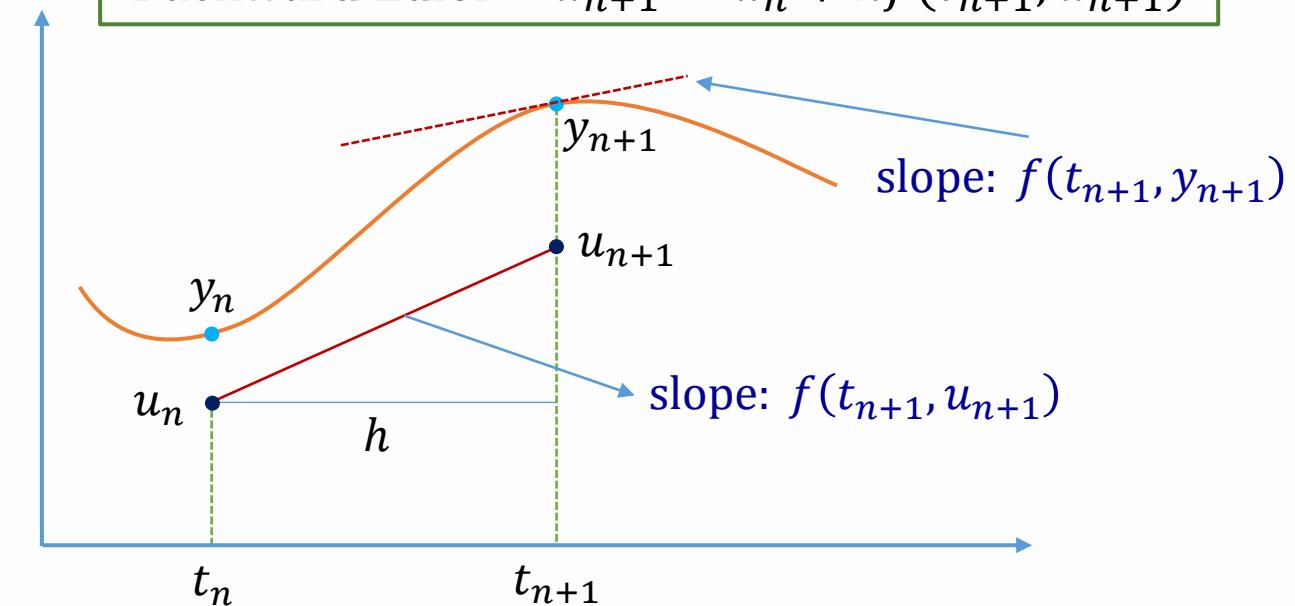
Implicit (ϕ depends on u_{n+1} itself through f)

$$u_{n+1} = u_n + h \times \phi(t_n, u_n, t_{n+1}, u_{n+1}, f, h)$$

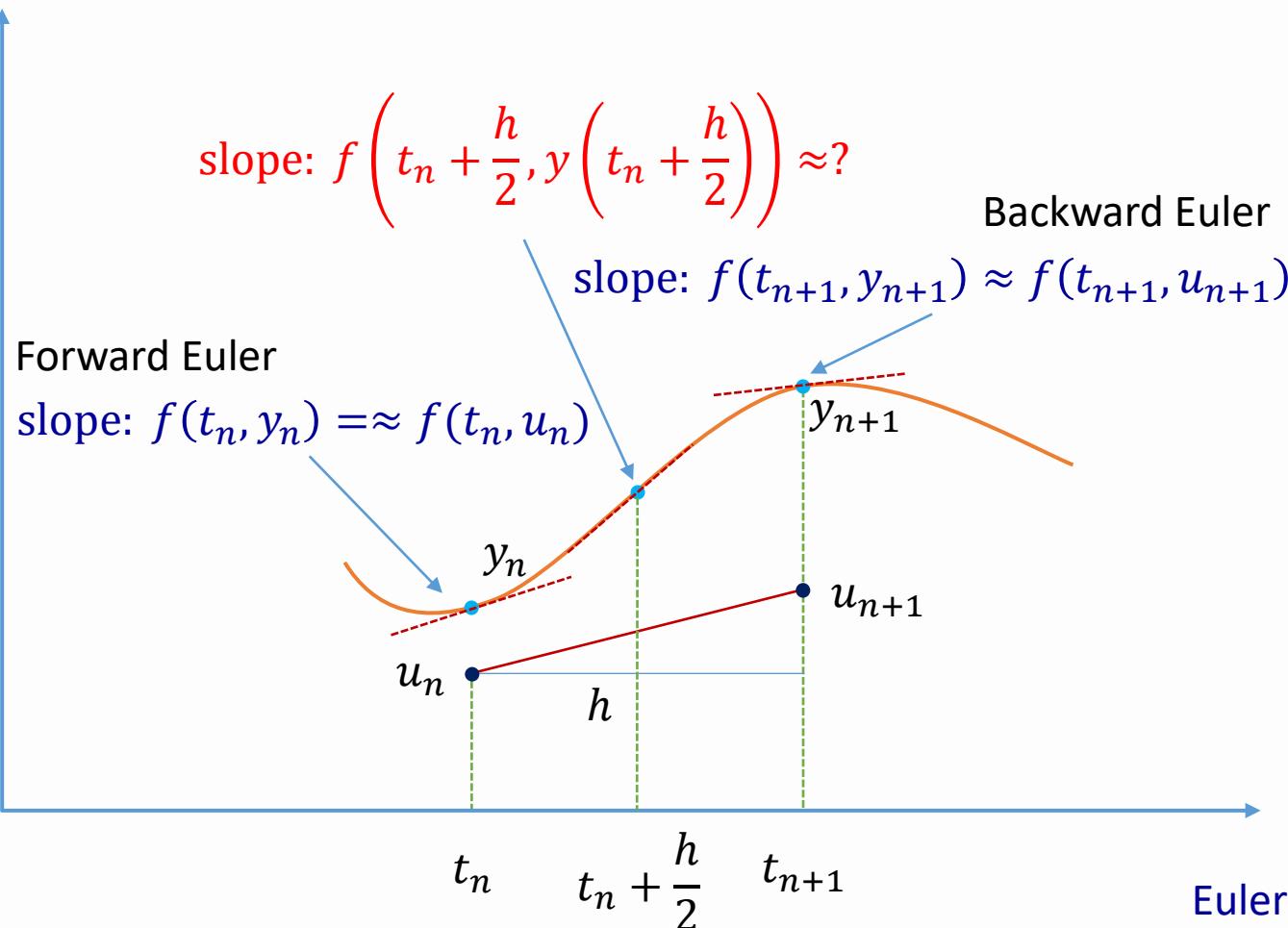
Euler : $u_{n+1} = u_n + hf(t_n, u_n)$



Backward Euler : $u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$



RECAPITULATION – SINGLE STEP METHOD



Explicit Midpoint Method

$$u_{n+1} = u_n + hf\left(t_n + \frac{h}{2}, u_n + \frac{h}{2}f_n\right)$$

Implicit Midpoint Method

$$u_{n+1} = u_n + hf\left(t_n + \frac{h}{2}, \frac{u_n + u_{n+1}}{2}\right)$$

Implicit Trapezoidal Method

$$u_{n+1} = u_n + \frac{h}{2}(f(t_n, u_n) + f(t_{n+1}, u_{n+1}))$$

Euler-Cauchy Method (Heun's Method) (Improved Euler)

$$u_{n+1} = u_n + \frac{h}{2}(f(t_n, u_n) + f(t_{n+1}, u_n + hf(t_n, u_n)))$$

RECAPITULATION –SINGLE STEP METHOD

Runge-Kutta Methods

$$u_{j+1} = u_j + h(\text{weighted average of slopes on the given interval})$$

Explicit Methods (n -stage):

$$k_1 = f(t_j, u_j)$$

$$k_2 = f(t_j + c_2 h, u_j + ha_{21}k_1)$$

$$k_3 = f(t_j + c_3 h, u_j + ha_{31}k_1 + ha_{32}k_2)$$

⋮

$$k_n = f(t_j + c_n h, u_j + ha_{n1}k_1 + ha_{n2}k_2 + \dots + ha_{nn-1}k_{n-1})$$

$$u_{j+1} = u_j + h[w_1k_1 + w_2k_2 + \dots + w_nk_n]$$

Euler-Cauchy Method (Heun's Method)

$$u_{j+1} = u_j + \frac{h}{2} (f(t_j, u_j) + f(t_{j+1}, u_j + hf(t_j, u_j)))$$

It can be rewritten as

$$k_1 = f(t_j, u_j)$$

$$k_2 = f(t_j + h, u_j + hk_1)$$

$$u_{j+1} = u_j + h \left(\frac{k_1 + k_2}{2} \right)$$

CLASSICAL RUNGE-KUTTA METHOD

$$k_1 = f(t_j, u_j) \quad k_2 = f\left(t_j + \frac{h}{2}, u_j + \frac{h}{2}k_1\right) \quad k_3 = f\left(t_j + \frac{h}{2}, u_j + \frac{h}{2}k_2\right) \quad k_4 = f(t_j + h, u_j + hk_3)$$

$$u_{j+1} = u_j + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Why Classical Runge-Kutta method of order 4 is popular?

Minimum number of function evaluation (MNFE) versus order

ORDER	2	3	4	5	6	7	8	...
MNFE	2	3	4	6	7	9	11	...

Remark: The order of an s -stage explicit method (RK) cannot be greater than s .

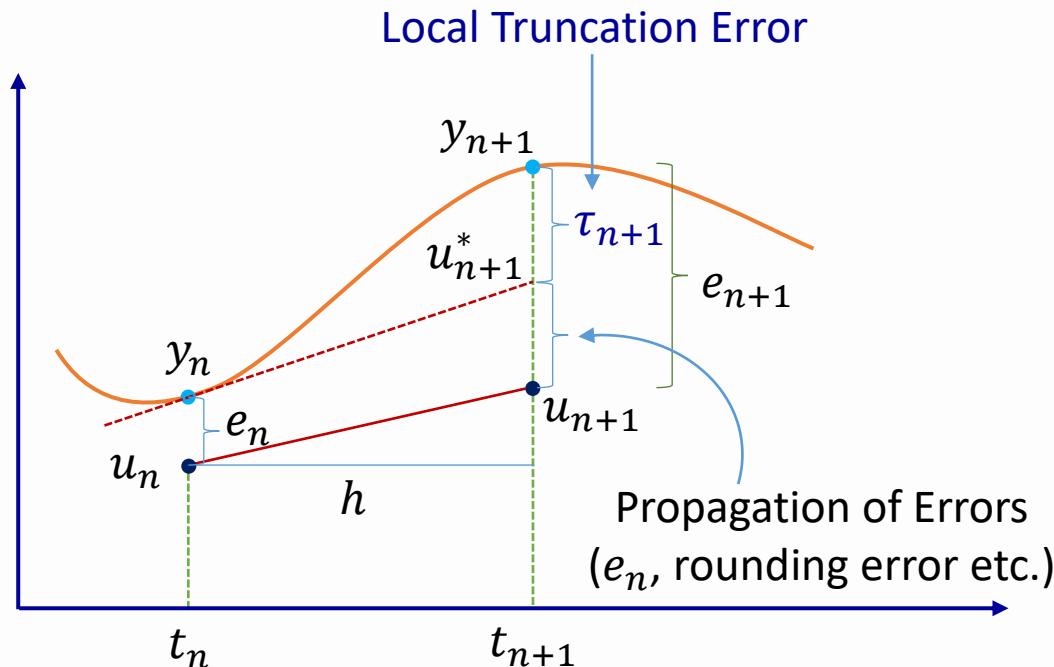
Also, there does not exist a s -stage method (explicit RK) with order s if $s \geq 5$.

CONVERGENCE ANALYSIS

A method is said to be **convergent** if $|u_n - y_n| \rightarrow 0, \forall n$ as $h \rightarrow 0$.

Moreover, it is said to be convergence of order p (≥ 1) if there exists $C > 0$ such that

$$|u_n - y_n| \leq Ch^p, \quad \forall n \text{ as } h \rightarrow 0 \quad \Leftrightarrow |u_n - y_n| = O(h^p)$$



Convergence is the study of the Global error (e_n) and **consistency** is the study of the local error (τ_n).

L.T.E.: Single Step Numerical Method

$$u_{n+1} = u_n + h \times \phi(t_n, u_n, f(t_n, u_n), h)$$

$$\tau_{n+1} = y_{n+1} - u_{n+1}^*$$

$$\tau_{n+1} = y_{n+1} - y_n - h\phi(t_n, y_n, f(t_n, y_n), h)$$

Consistency: The method is said to be **consistent** if

$$\frac{1}{h} \tau_{n+1} \rightarrow 0, \forall n \text{ as } h \rightarrow 0$$

Moreover, it is said to be convergence of order p (≥ 1) if there exists $C > 0$ such that $\left| \frac{1}{h} \tau_{n+1} \right| \leq Ch^p, \forall n \text{ as } h \rightarrow 0$.

Euler Method: $u_{n+1} = u_n + hf(t_n, u_n)$

$$\tau_{n+1} = y_{n+1} - y_n - hf(t_n, y_n)$$

$$\tau_{n+1} = y_n + hy'(t_n) + \frac{h^2}{2}y''(t_n) - y_n - hf(t_n, y_n)$$

$$\tau_{n+1} = y_n + hf(t_n, y_n) + \frac{h^2}{2}y''(t_n) + \dots - y_n - hf(t_n, y_n)$$

$$\Rightarrow \left| \frac{\tau_{n+1}}{h} \right| = \mathcal{O}(h)$$

The calculation of consistency is essentially based on the application of Taylor series expansion.

Backward Euler Method

$$\left| \frac{\tau_{n+1}}{h} \right| = \mathcal{O}(h)$$

Explicit Midpoint Method

Implicit Midpoint Method

Implicit Trapezoidal Method

Euler-Cauchy Method

$$\left| \frac{\tau_{n+1}}{h} \right| = \mathcal{O}(h^2)$$

CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

$$u_{n+1} = u_n + hf(t_n, u_n); \quad u_0 = y_0$$

$$\Rightarrow e_{n+1} = y_{n+1} - u_{n+1}; \quad n = 0, 1, 2, \dots$$

$$\Rightarrow e_{n+1} = u_{n+1}^* - u_{n+1} + \tau_{n+1}$$

$$\Rightarrow e_{n+1} = y_n + hf(t_n, y_n) - u_n - hf(t_n, u_n) + \tau_{n+1}$$

$$\Rightarrow e_{n+1} = e_n + h(f(t_n, y_n) - f(t_n, u_n)) + \tau_{n+1}$$

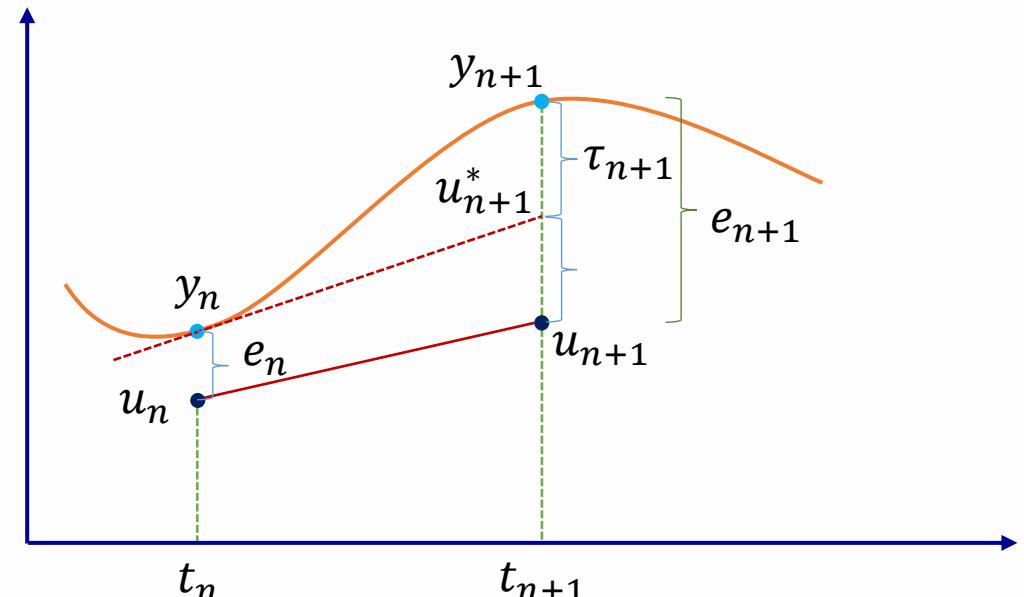
$$\Rightarrow |e_{n+1}| \leq |e_n| + h|f(t_n, y_n) - f(t_n, u_n)| + |\tau_{n+1}|$$

Using Lipschitz condition on f , i.e., $|f(t_n, y_n) - f(t_n, u_n)| \leq L|y_n - u_n|$ and $|\tau_{n+1}| \leq Ch^2$

$$\Rightarrow |e_{n+1}| \leq Ch^2 + (1 + Lh)|e_n|$$

By recursion

$$\Rightarrow |e_{n+1}| \leq Ch^2 + (1 + Lh)(Ch^2 + (1 + Lh)|e_{n-1}|) = Ch^2 + Ch^2(1 + Lh) + (1 + Lh)^2|e_{n-1}|$$



CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

$$|e_{n+1}| \leq Ch^2 + Ch^2(1 + Lh) + (1 + Lh)^2|e_{n-1}|$$

$$\Rightarrow |e_{n+1}| \leq Ch^2 + Ch^2(1 + Lh) + Ch^2(1 + Lh)^2 + (1 + Lh)^3|e_{n-2}|$$

$$\Rightarrow |e_{n+1}| \leq Ch^2 + Ch^2(1 + Lh) + Ch^2(1 + Lh)^2 + \dots + (1 + Lh)^n|e_1|$$

$$\Rightarrow |e_{n+1}| \leq Ch^2 + Ch^2(1 + Lh) + Ch^2(1 + Lh)^2 + \dots + Ch^2(1 + Lh)^n$$

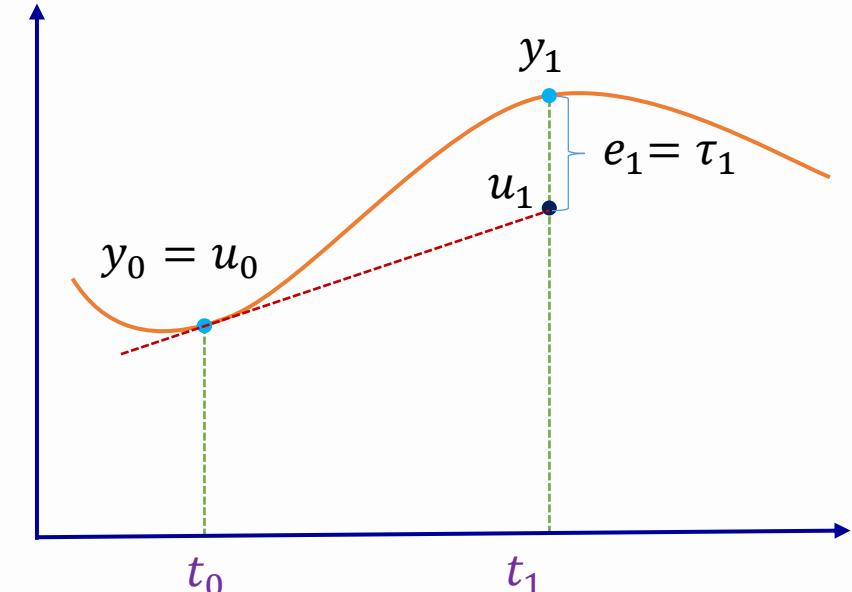
$$\Rightarrow |e_{n+1}| \leq \frac{(1 + hL)^{n+1} - 1}{(1 + hL - 1)} Ch^2$$

$$\Rightarrow |e_{n+1}| \leq \frac{(1 + hL)^{n+1} - 1}{L} Ch$$

$$|e_{n+1}| \leq \frac{e^{(n+1)hL} - 1}{L} Ch$$

$$\Rightarrow |e_{n+1}| \leq \frac{e^{(t_{n+1}-t_0)L} - 1}{L} Ch; \quad \forall n$$

Using $1 + hL \leq e^{hL}$



Note that: $t_1 = t_0 + h$

$$t_2 = t_0 + 2h$$

$$t_{n+1} = t_0 + (n + 1)h$$

The total error tends to zero with the same order as consistency error

$$\left| \frac{\tau_{n+1}}{h} \right| = \mathcal{O}(h)$$

CONVERGENCE ANALYSIS: EULER METHOD (ROUNDING ERRORS)

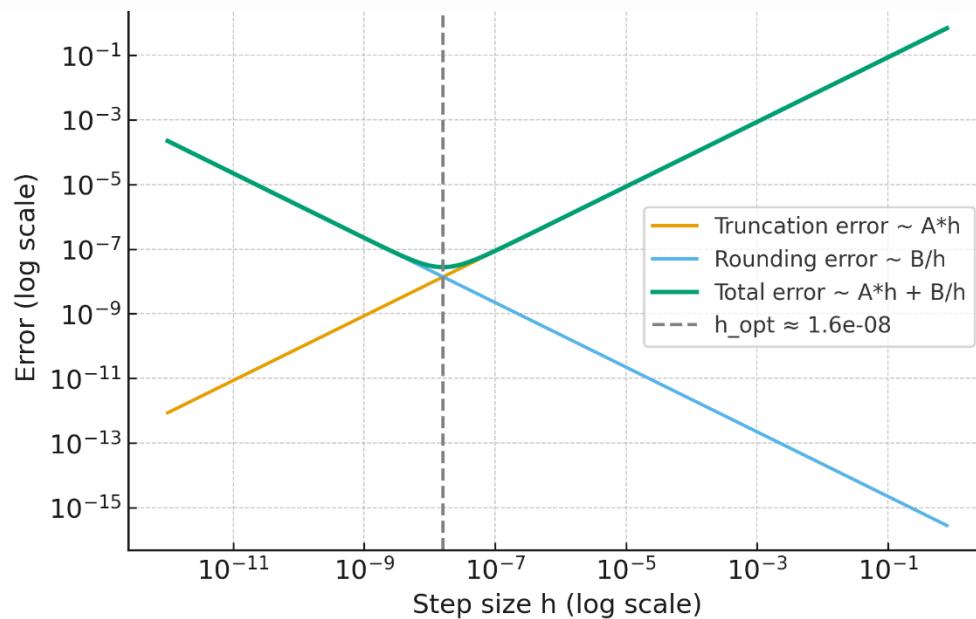
$$\bar{u}_{n+1} = \bar{u}_n + hf(t_n, \bar{u}_n) + \xi_n; \quad \bar{u}_0 = y_0 + \xi_0$$

$$\Rightarrow |y_{n+1} - \bar{u}_{n+1}| \leq e^{(t_{n+1}-t_0)L} \left(|\xi_0| + \frac{1}{L} \left(Ch + \frac{\xi}{h} \right) \right); \quad \xi = \max_{1 \leq i \leq n+1} \xi_i$$

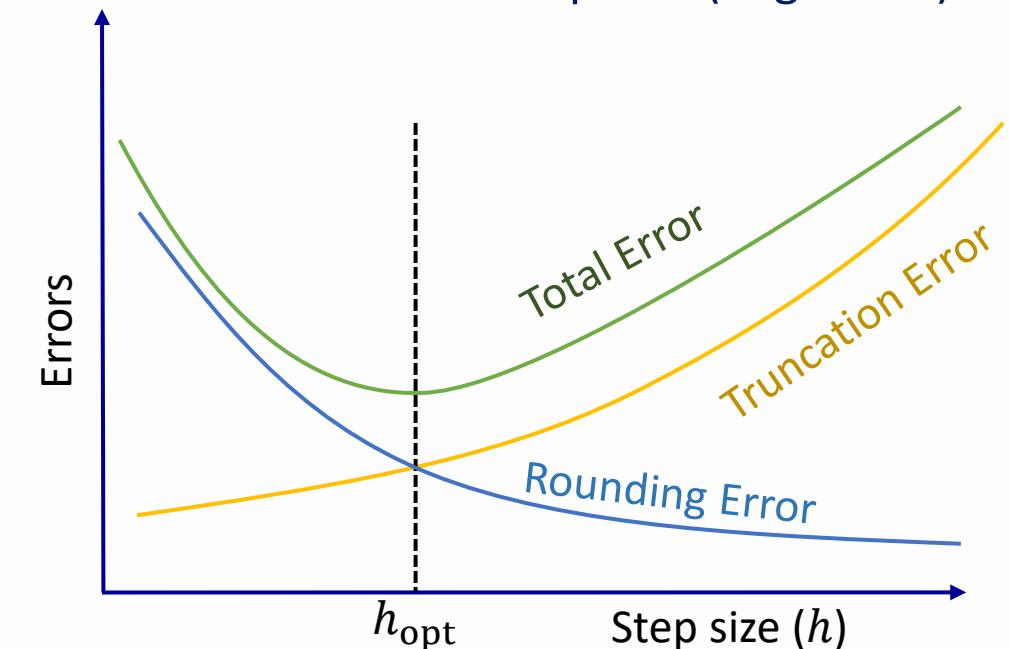
$$\Rightarrow e_{n+1} \leq Ah + \frac{B}{h}$$

Presence of rounding error does not allow to conclude that $e \rightarrow 0$ as $h \rightarrow 0$.

ERROR vs. Step Size (Euler)



ERROR vs. Step Size (In general)



Direct convergence proof is difficult specifically for more complicated methods.

Alternatively we can study *convergence* through *consistency* and *stability*.

Stability of the IVP:

$$y' = f(t, y); \quad y(t_0) = y_0, \quad t \in I \quad (1)$$

Perturbed IVP: $z' = f(t, z) + \delta(t); \quad z(t_0) = y_0 + \delta_0, \quad t \in I \quad (2)$

The IVP (1) is said to be stable on I if for any perturbation $(\delta_0, \delta(t))$ satisfying

$$|\delta_0| < \epsilon, |\delta(t)| < \epsilon, \quad \forall t \in I$$

There exists $C > 0$ such that

$$|y(t) - z(t)| < C\epsilon$$

The constant C depends in general on the problem data t_0, y_0 and f but not on ϵ .

Zero Stability of One-Step Methods (Analogous to the Stability of IVP):

$$\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0, \quad t \in [t_0, t_0 + T]$$

Single Step Method: $u_{n+1} = u_n + h\phi(t_n, u_n, f(t_n, u_n); h), \quad u_0 = y_0 \quad (1)$

Single Step Method (perturbed): $z_{n+1} = z_n + h[\phi(t_n, z_n, f(t_n, z_n); h) + \delta_{n+1}], \quad z_0 = y_0 + \delta_0$

The numerical method (1) is said to be zero stable if $\exists h_0 > 0$ and $C > 0$ such that $\forall h \in (0, h_0], \quad \forall \epsilon > 0$,
if $|\delta_n| < \epsilon$, for all $0 \leq n \leq N_h$, then $|z_n - u_n| < C\epsilon, \quad 0 \leq n \leq N_h$

Both constant C and h_0 may depend on problem's data set t_0, T, y_0 , and f but not on ϵ .

This notion of the stability deals with the behaviour of the numerical methods in the limit case $h \rightarrow 0$.

Zero Stability of One-Step Method: $u_{n+1} = u_n + h\phi(t_n, u_n, f(t_n, u_n); h)$, $u_0 = y_0$ (1)

$z_{n+1} = z_n + h[\phi(t_n, z_n, f(t_n, z_n); h) + \delta_{n+1}]$, $z_0 = y_0 + \delta_0$ (2)

If the increment function ϕ is Lipschitz continuous with respect to the second argument, with content L independent of h and of the nodes $t_n \in [t_0, t_0 + T]$, i.e.,

$$|\phi(t_n, u_n, f(t_n, u_n); h) - \phi(t_n, z_n, f(t_n, z_n); h)| \leq L|u_n - z_n|, \quad 0 \leq n \leq N_h$$

Then the method (1) is zero stable.

Setting $w_{n+1} = z_{n+1} - u_{n+1}$, from equation (1) and (2) we obtain:

$$w_{n+1} = w_n + h[\phi(t_n, u_n, f(t_n, u_n); h) - \phi(t_n, z_n, f(t_n, z_n); h)] + h\delta_{n+1}$$

$$w_{n+1} = w_n + h[\phi(t_n, u_n, f(t_n, u_n); h) - \phi(t_n, z_n, f(t_n, z_n); h)] + h\delta_{n+1}$$

$$\Rightarrow w_n = w_{n-1} + h[\phi(t_{n-1}, u_{n-1}, f(t_{n-1}, u_{n-1}); h) - \phi(t_{n-1}, z_{n-1}, f(t_{n-1}, z_{n-1}); h)] + h\delta_n$$

Substituting w_{n-1} with the above relation again recursively we obtain:

$$w_n = w_0 + h \sum_{j=1}^n \delta_j + h \sum_{j=0}^{n-1} (\phi(t_j, u_j, f(t_j, u_j); h) - \phi(t_j, z_j, f(t_j, z_j); h)) \quad (w_0 = z_0 - u_0 = \delta_0)$$

Using Lipschitz continuity of ϕ

$$|w_n| \leq |\delta_0| + h \sum_{j=0}^{n-1} |\delta_{j+1}| + hL \sum_{j=0}^{n-1} |w_j|, \quad 1 \leq n \leq N_h$$

$$|w_n| \leq |\delta_0| + h \sum_{j=0}^{n-1} |\delta_{j+1}| + hL \sum_{j=0}^{n-1} |w_j|$$

Using Gronwall's Lemma and $|\delta_n| < \epsilon$, we get

$$|w_n| \leq \left(|\delta_0| + h \sum_{j=0}^{n-1} |\delta_{j+1}| \right) \exp(nhL)$$

$$\begin{aligned} |w_n| &\leq (1 + nh)\epsilon \exp(nhL) & \leq (1 + T) \exp(TL) \epsilon \\ &\leq T & \leq T & = C \end{aligned}$$

Hence the method (1) is zero stable

Gronwall's Lemma (Discrete) Let k_n be a nonnegative sequence and ϕ_n a sequence such that

$$w_0 \leq g_0 \quad \text{and} \quad w_n \leq (g_0 + c_n) + \sum_{j=0}^{n-1} k_s w_s, \quad n \geq 1$$

$$\text{If } g_0 \geq 0, c_n \geq 0, \text{ then} \quad w_n \leq (g_0 + c_n) \exp\left(\sum_{j=0}^{n-1} k_s\right), \quad n \geq 1$$

Convergence Theorem (Lax-Richtmyer Theorem)

If the numerical method is stable then

$$|y_n - u_n| \leq \left(|y_0 - u_0| + T \left(\frac{\tau}{h} \right) \right) e^{TL}, \quad 1 \leq n \leq N_h, \quad \tau = \max_{0 \leq n \leq N_{h-1}} |\tau_{n+1}(h)|$$

If $|y_0 - u_0| \leq C_1 h^p$ ($= \mathcal{O}(h^p)$) and $\frac{\tau}{h} = \mathcal{O}(h^p)$ (consistency order p) then $|y_n - u_n| = \mathcal{O}(h^p)$

A numerical method is convergent of order p if it is consistent of order p and zero-stable.

Consistency + Stability \Rightarrow Convergence

Sketch of the proof: $u_{n+1} = u_n + h\phi(t_n, u_n, f(t_n, u_n); h), \quad u_0 = y_0 \quad (1)$

$$y_{n+1} = y_n + h\phi(t_n, y_n, f(t_n, y_n); h) + \tau_{n+1} \quad (2)$$

Proceed as before for the case of zero stability.

Consider the following problem

$$\frac{dy}{dt} = \lambda y; \quad y(0) = 1 \quad \text{Exact Solution: } y(t) = e^{\lambda t}$$

Apply the Euler Method

$$u_{n+1} = u_n + \lambda h u_n \quad \Rightarrow u_{n+1} = (1 + \lambda h)u_n$$

$$\Rightarrow u_n = (1 + \lambda h)^n u_0 \quad \text{given } u_0 = 1$$

$$\Rightarrow u_n = \exp(\ln(1 + \lambda h)^n) \quad \left(h = \frac{t_n}{n} \right)$$

Let $n \rightarrow \infty, h \rightarrow 0$ such that $nh = t_n$

$$\Rightarrow u_n = \lim_{n \rightarrow \infty} \exp\left(t_n \lambda \frac{\ln\left(1 + \frac{t_n \lambda}{n}\right)}{\frac{t_n \lambda}{n}}\right) \Rightarrow u_n = \exp(\lambda t_n)$$

But in practice $h \rightarrow 0$

Lets take $\lambda = -10$ & $h = 0.4$

$$\Rightarrow u_n = (-3)^n$$

The solution blow-up and oscillates

We observe that the numerical solution will decay if

$$|(1 + \lambda h)| < 1 \Rightarrow -2 < \lambda h < 0$$

Remark. Zero-stability, while necessary for convergence, is not sufficient for practical purposes. In real computations, one often requires stronger notions of stability (such as absolute stability, A-stability, or L-stability) to ensure reliable performance of the numerical method

Model Equation: Let us consider the following IVP:

$$\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0, \quad t \in [t_0, b]$$

The behavior of solution of above IVP in the neighborhood of any point (\bar{t}, \bar{y}) can be predicted by the linearized form of DE.

The function $f(t, y)$ can be linearized in the neighborhood of the point (\bar{t}, \bar{y}) by expanding it into the Taylor series as

$$f(t, y) = f(\bar{t}, \bar{y}) + (t - \bar{t}) f_t(\bar{t}, \bar{y}) + (y - \bar{y}) f_y(\bar{t}, \bar{y}) + \text{higher order terms}$$

Define: $\mu = f_t(\bar{t}, \bar{y}), \quad \lambda = f_y(\bar{t}, \bar{y}), \quad c = f(\bar{t}, \bar{y}) - \bar{y}\lambda + (t - \bar{t})\mu$

The given ode can be written as $y' \approx \lambda y + c$

Substituting $\omega = y + \left(\frac{c}{\lambda}\right) + \left(\frac{\mu}{\lambda^2}\right)$

$$y' - \frac{\mu}{\lambda} \approx \lambda \left[\omega - \left(\frac{c}{\lambda}\right) - \left(\frac{\mu}{\lambda^2}\right) \right] + c \Rightarrow \omega' = \lambda\omega \quad (\text{model equation}) \quad \text{Exact solution: } \omega = ke^{\lambda t}$$

For practical purposes (similar to lab scale test), it is sufficient to check stability for the linear equation $\omega' = \lambda\omega$.

Absolute stability is typically analysed using the test equation $y' = \lambda y$, since it captures several essential features of more general differential equations.

For broader applicability, λ is taken to be complex, $\lambda = \lambda_R + i\lambda_I$, with the restriction $\lambda_R \leq 0$ to ensure that the exact solution remains non-growing (i.e., stable) in the continuous case.

Absolute Stability: A numerical method for approximating

$$y'(t) = \lambda y; \quad t > 0; \quad \operatorname{Re}(\lambda) < 0, \quad y(0) = 1$$

is absolutely stable if $|u_n| \rightarrow 0$ as $t_n \rightarrow \infty$

Region of absolute stability = $\{\lambda h \in \mathbb{C}: \text{the method is absolutely stable at } \lambda h\}$

Abolute Stability \Rightarrow Zero Stability

Please note that a single step method when applied to the test equation $y'(t) = \lambda y$ leads to

$$u_{n+1} = E(\lambda h)u_n; \quad n = 0, 1, 2, \dots$$

We call single step method absolutely stable if $|E(\lambda h)| < 1$

Absolute Stability of Euler Method:

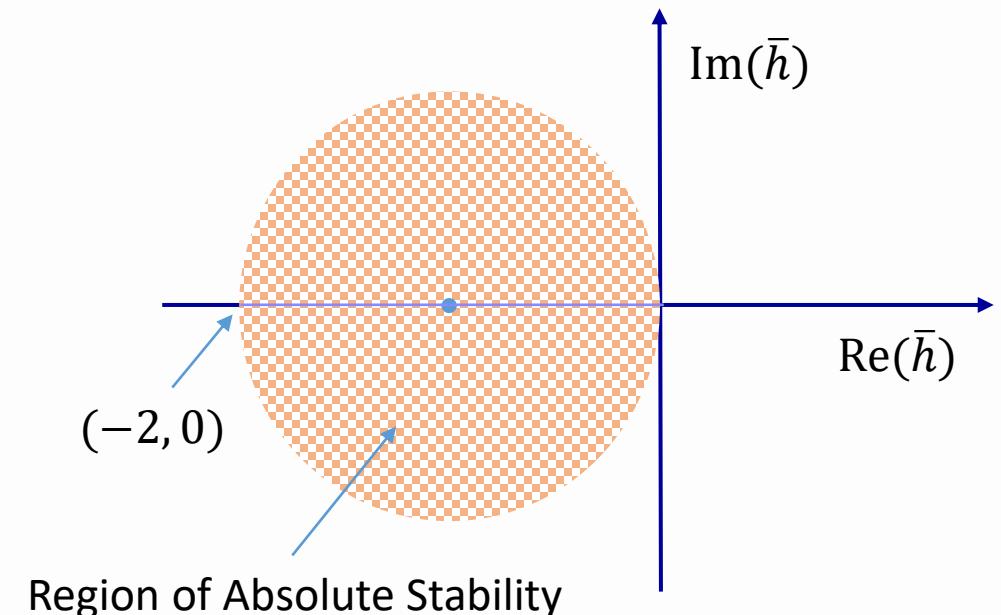
Applying the Euler method on the test equation:

$$u_{n+1} = u_n + h \lambda u_n \Rightarrow u_{n+1} = (1 + \underbrace{\lambda h}_{\bar{h} = x + iy})u_n$$

$$|1 + \lambda h| = |1 + x + iy| = \sqrt{(1 + x)^2 + y^2}$$

For Absolute stability, we require

$$\sqrt{(1 + x)^2 + y^2} < 1 \Rightarrow (1 + x)^2 + y^2 < 1$$



Region of Absolute Stability: $\{ \bar{h} \in \mathbb{C}: | \bar{h} + 1 | < 1 \}$

Absolute Stability of Backward Euler Method: $u_{n+1} = u_n + h f_{n+1}$

$$\Rightarrow u_{n+1} = u_n + h \lambda u_{n+1} \Rightarrow u_{n+1} = \frac{1}{(1 - \lambda h)} u_n$$

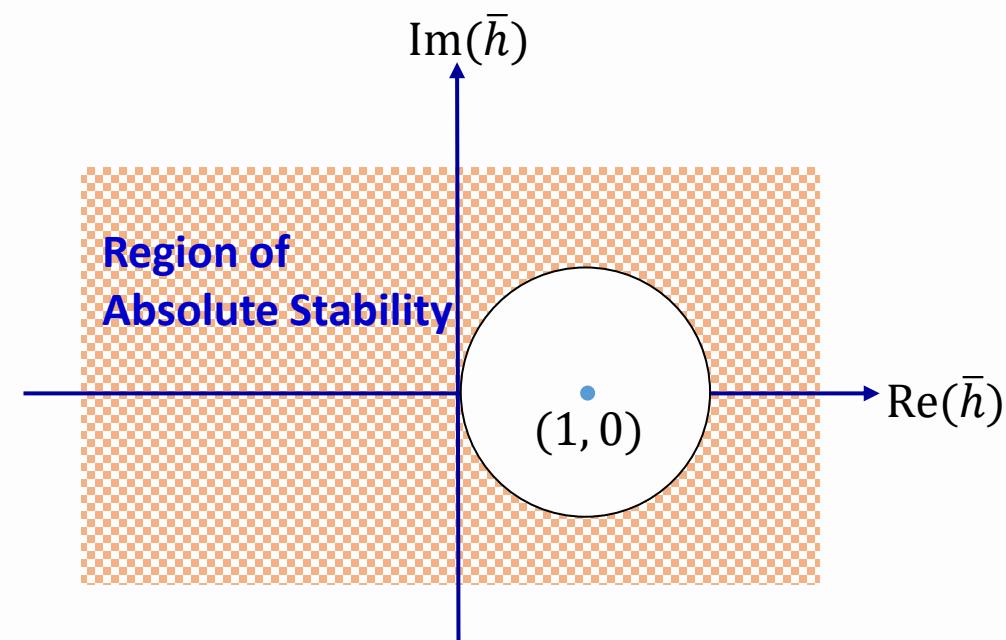
$$\Rightarrow E(\lambda h) = \frac{1}{(1 - \lambda h)}$$

For Absolute stability, we require

$$\left| \frac{1}{(1 - \lambda h)} \right| < 1 \Rightarrow |1 - \lambda h| > 1 \quad (\lambda h = \bar{h} = x + iy)$$

$$\Rightarrow |(1 - x) - iy| > 1 \Rightarrow (1 - x)^2 + y^2 > 1$$

Region of Absolute Stability: $\{ \bar{h} \in \mathbb{C} : | \bar{h} - 1 | > 1 \}$



The region of absolute stability is the entire complex plane except a disk centred at $(1, 0)$ with radius 1.

Backward Euler Method is unconditionally absolutely stable.

A method is called **A-stable** if its region of absolute stability includes the entire left half of the complex plane.

ABSOLUTE STABILITY – AN OBSERVATION

Suppose we solve $y'(t) = 5y(t)$, $y(0) = 1$ using backward Euler method

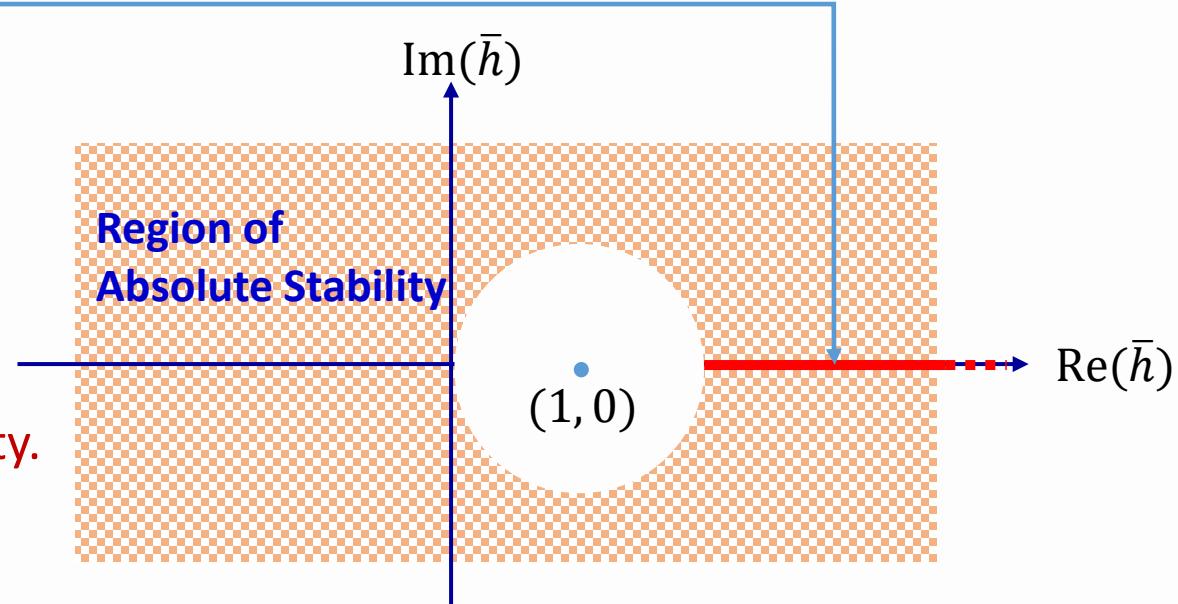
If we pick any $5h > 2 \Rightarrow h > 2/5$
(Absolute stability region)

Since λh is from the region of stability, the solution will decay and tends to 0 as t tends to ∞ .

However, the exact solution of the problem tends to infinity.

Why this is not a contradiction of A-stability?

Backward Euler is **A-stable** because for $\text{Re}(\lambda) < 0$ (decaying continuous problems), its numerical solution will also decay (and not blow up). A-stability says nothing about problems with $\text{Re}(\lambda) > 0$ (growing problems): the method can (and here does) artificially damp them if the step is too large.



Absolute Stability of Trapezoidal Method: $u_{n+1} = u_n + \frac{h}{2}(f(t_n, u_n) + f(t_{n+1}, u_{n+1}))$

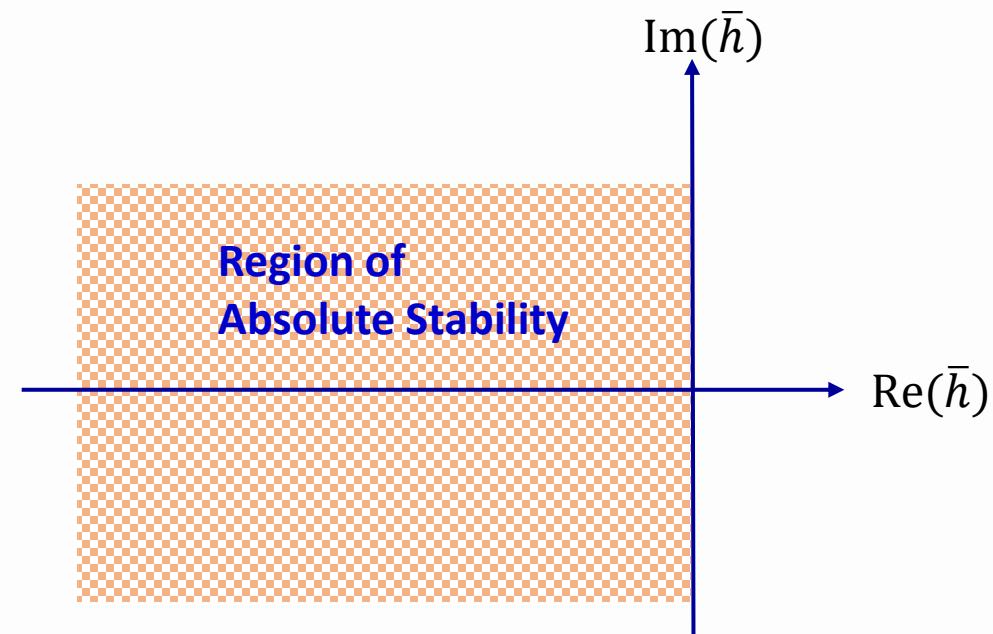
$$\Rightarrow u_{n+1} = u_n + \frac{h}{2}(\lambda u_n + \lambda u_{n+1}) \Rightarrow \left(1 - \frac{\bar{h}}{2}\right)u_{n+1} = \left(1 + \frac{\bar{h}}{2}\right)u_n \Rightarrow u_{n+1} = \frac{\left(1 + \frac{\bar{h}}{2}\right)}{\left(1 - \frac{\bar{h}}{2}\right)}u_n$$

$$\Rightarrow E(\bar{h}) = \frac{\left(1 + \frac{\bar{h}}{2}\right)}{\left(1 - \frac{\bar{h}}{2}\right)}$$

For Absolute stability, we require $\left(1 + \frac{\bar{h}}{2}\right) < \left(1 - \frac{\bar{h}}{2}\right)$

$$\Rightarrow (2 + \bar{h}) < (2 - \bar{h}) \Leftrightarrow \operatorname{Re}(\bar{h}) < 0$$

Region of Absolute Stability: $\{\bar{h} \in \mathbb{C}: \operatorname{Re}(\bar{h}) < 0\}$



Implicit Trapezoidal Method is **A stable**.

Absolute Stability of Euler-Cauchy Method (Heun's Method)

$$u_{n+1} = u_n + \frac{h}{2} (f(t_n, u_n) + f(t_{n+1}, u_n + hf(t_n, u_n)))$$

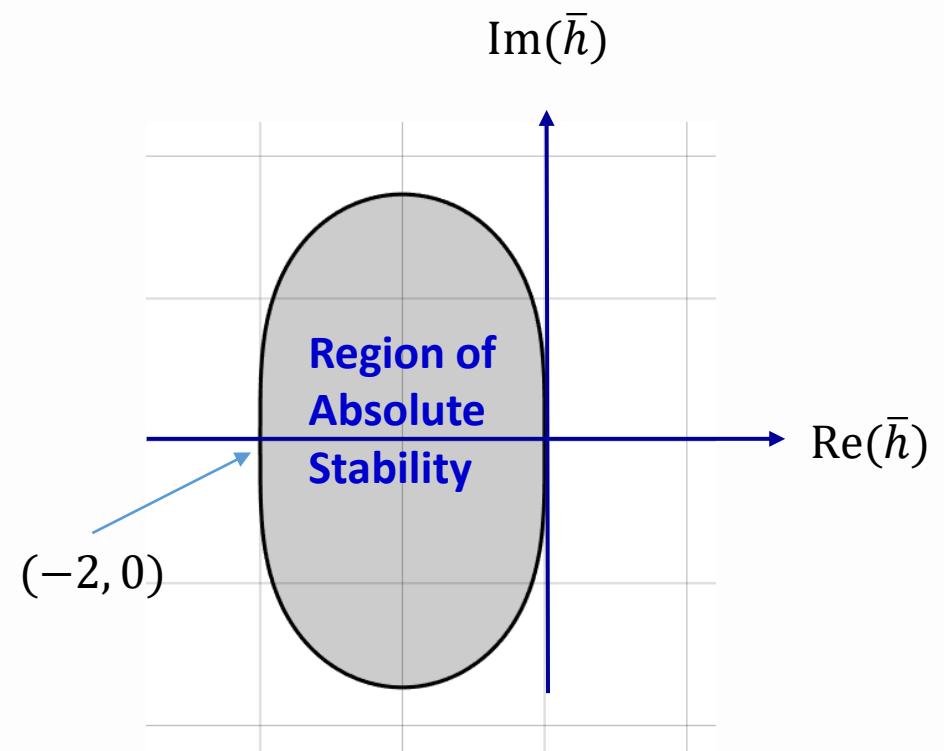
$$\Rightarrow u_{n+1} = u_n + \frac{h}{2} (\lambda u_n + \lambda u_n (1 + \lambda h))$$

$$\Rightarrow u_{n+1} = \left(1 + \frac{\lambda h}{2} + \frac{\lambda h}{2} + \frac{\lambda^2 h^2}{2} \right) u_n$$

$$\Rightarrow u_{n+1} = \left(1 + \lambda h + \frac{\lambda^2 h^2}{2} \right) u_n$$

$$\Rightarrow E(\bar{h}) = \left(1 + \bar{h} + \frac{\bar{h}^2}{2} \right)$$

Region of Absolute Stability: $\left\{ \bar{h} \in \mathbb{C} : \left| 1 + \bar{h} + \frac{\bar{h}^2}{2} \right| < 1 \right\}$



Absolute Stability of Euler-Cauchy Method (Heun's Method)

For real $\lambda < 0$:

$$\left| \left(1 + \lambda h + \frac{\lambda^2 h^2}{2} \right) \right| < 1 \Rightarrow -1 < \left(1 + \lambda h + \frac{\lambda^2 h^2}{2} \right) < 1$$

$$\Rightarrow -1 < \frac{1}{2} (2 + 2\lambda h + \lambda^2 h^2) < 1$$

$$\Rightarrow -2 < (1 + (1 + \lambda h)^2) < 2$$

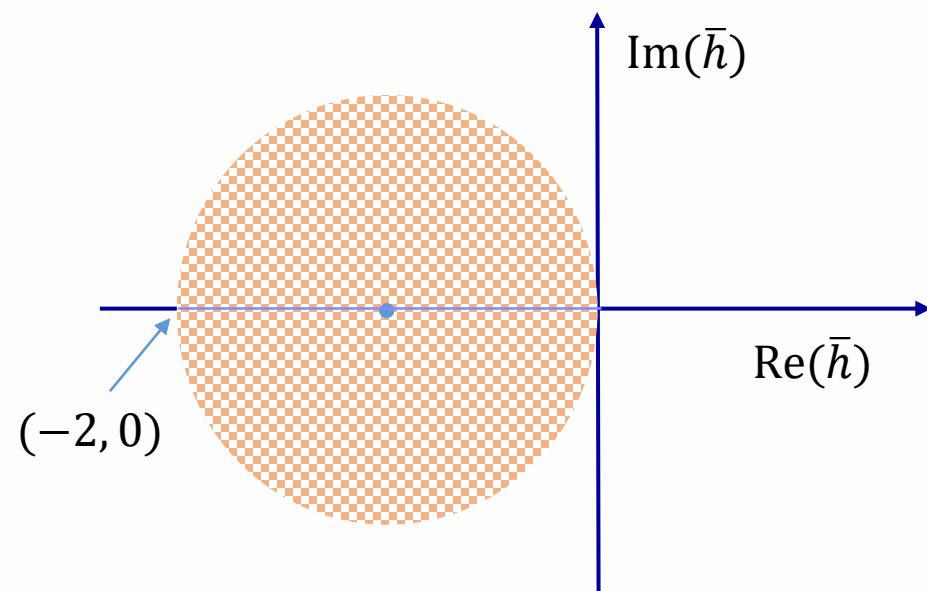
always satisfied

$$\Rightarrow (1 + (1 + \lambda h)^2) < 2 \Rightarrow (1 + \lambda h)^2 < 1 \Rightarrow -1 < 1 + \lambda h < 1 \Rightarrow -2 < \lambda h < 0$$

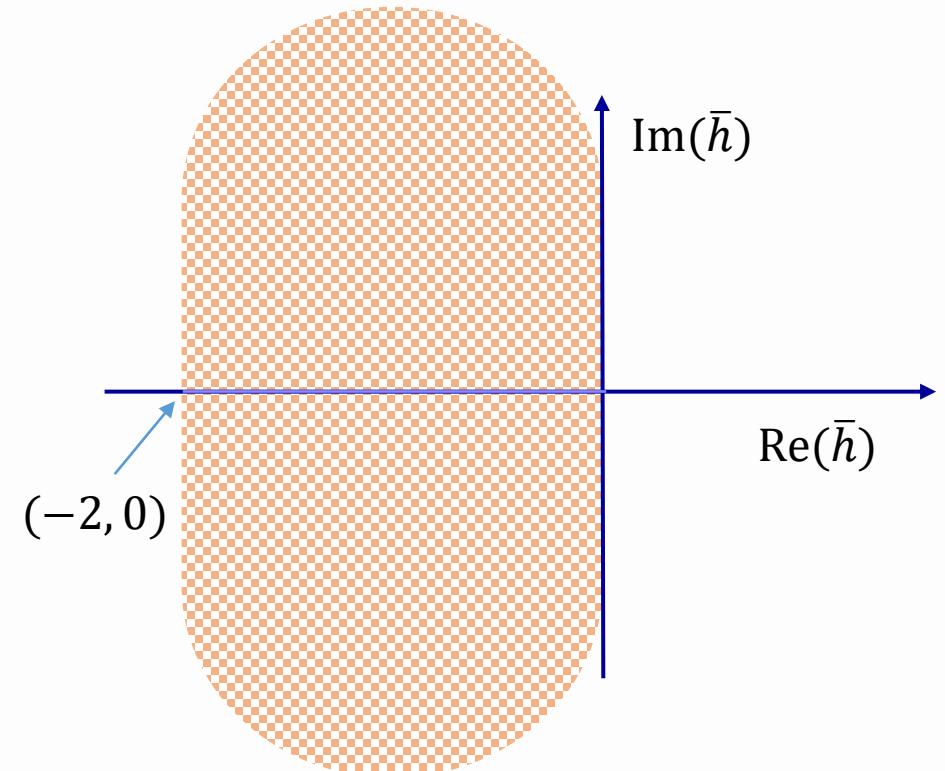
$$\Rightarrow \lambda h \in (-2, 0) \quad \text{Same as Euler Method}$$

Region of Absolute Stability of Explicit Methods

Euler Method

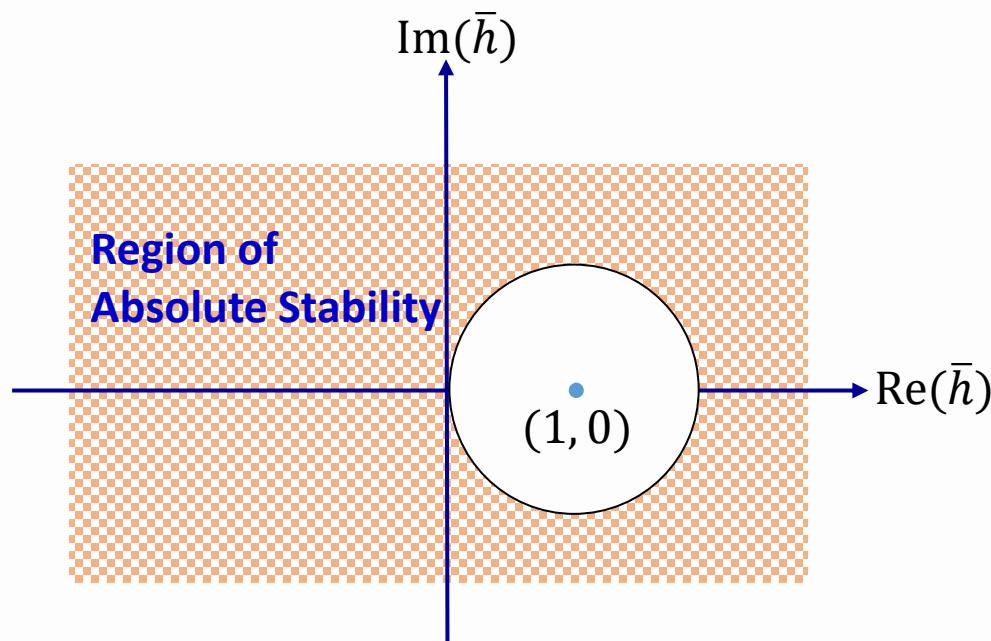


Euler-Cauchy Method

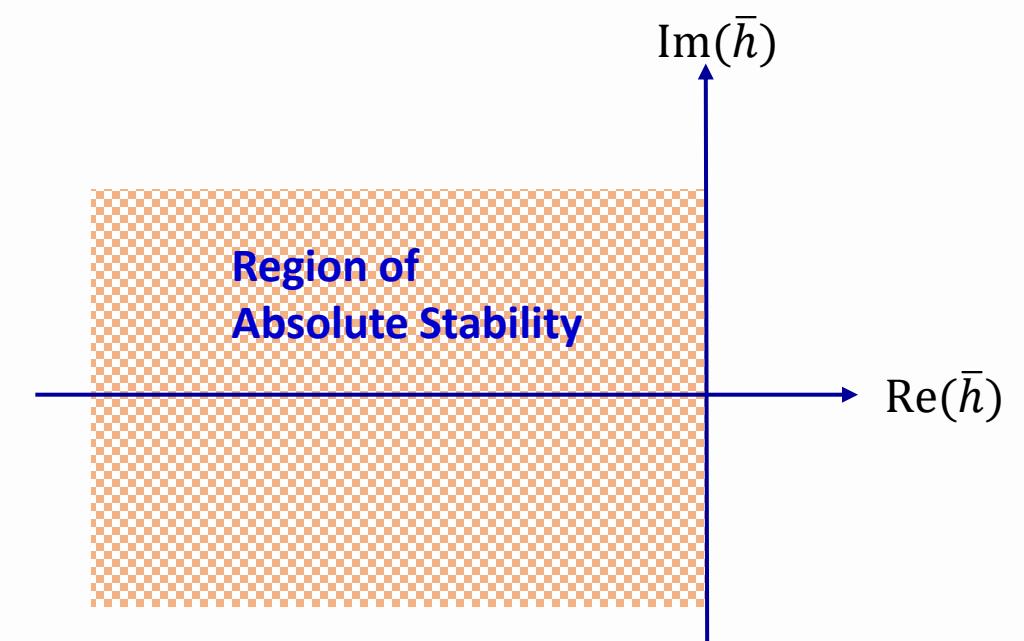


Region of Absolute Stability of Implicit Methods

Backward Euler Method



Trapezoidal Method

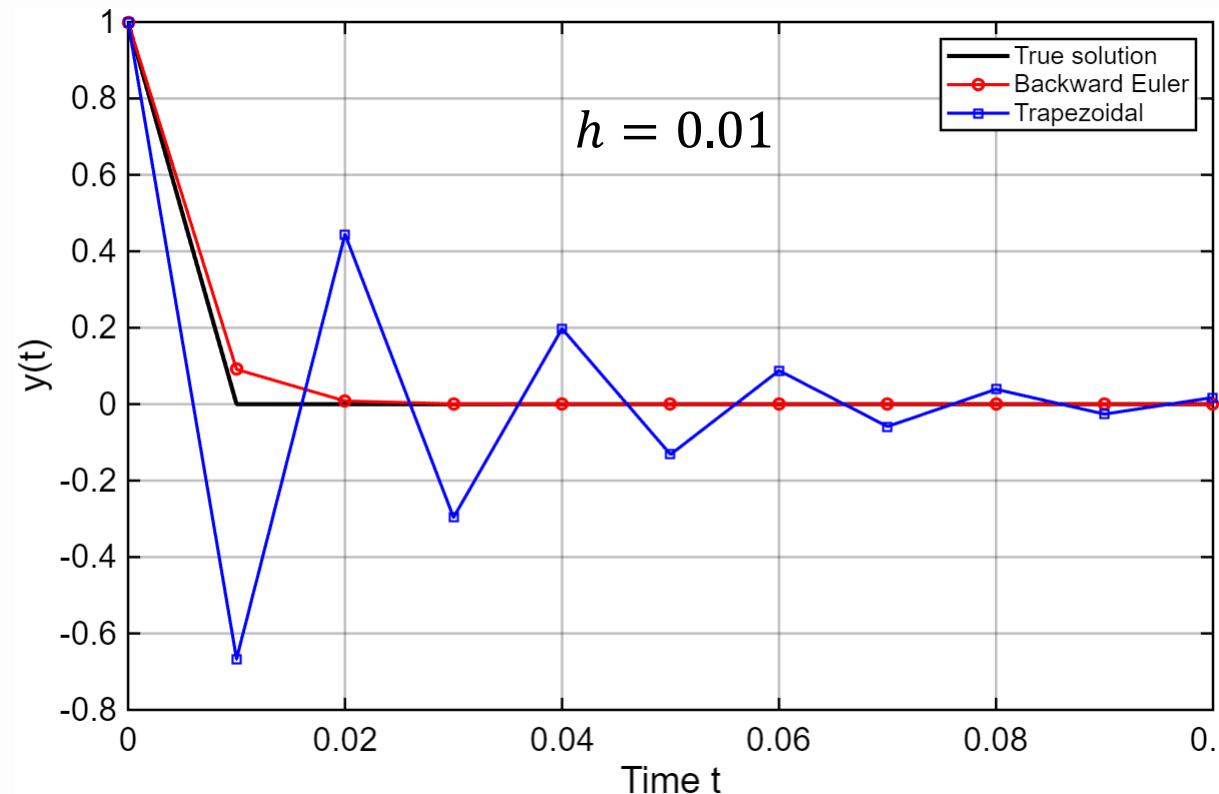


Problems with Trapezoidal Method

Consider solution of a stiff IVP: $y'(t) = -1000y; y(0) = 1$

If we want to solve it using explicit method, e.g., Euler Method then $h < 0.0001$.

Therefore we need to use an implicit method.



Implicit Midpoint Method

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

Implicit Trapezoidal Method

$$u_{n+1} = u_n + \frac{h}{2} (f(t_n, u_n) + f(t_{n+1}, u_{n+1}))$$

A numerical method for solving ODEs is called **L-stable** if

1. It is **A-stable** (its region of absolute stability includes the entire left half of the complex plane), and
2. Its **stability function** $E(\bar{h})$ satisfies $\lim_{\bar{h} \rightarrow -\infty} E(\bar{h}) = 0$

Backward Euler Method:

$$\Rightarrow E(\lambda h) = \frac{1}{(1 - \lambda h)} \Rightarrow E(\lambda h) \rightarrow 0 \text{ as } \lambda h \rightarrow -\infty \quad \text{L-stable}$$

Trapezoidal Method:

$$\Rightarrow E(\lambda h) = \frac{(1 + \lambda h/2)}{(1 - \lambda h/2)} \Rightarrow E(\lambda h) \rightarrow -1 \text{ as } \lambda h \rightarrow -\infty \quad \text{Only A-stable and not L-stable}$$

Note: L-stability adds the property that **very stiff components decay to zero rapidly**.

This eliminates spurious oscillations and makes the method especially effective for stiff problems.

CONCLUDING REMARKS

- Implicit one-step methods (examined so far) → *unconditionally absolutely stable*.
- Explicit schemes (examined so far) → *conditionally absolutely stable*.
- This is not a general rule. Some implicit schemes are unstable or only conditionally stable. However, no explicit scheme is *unconditionally absolutely stable*.

Thank You