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RECAP — SINGLE STEP METHODS FOR SOLVING IVPs

[ dy h
Consider i f(t,y); y(ty) =y, t € [ty b]

Assume that the solution exists and is unique, i.e., f is uniformly

\Ljpschitz continuous w.r.t. the second argument. )

Numerical Solution:

Un = y(tn) = Yn
y(t)
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Key Idea of the Single Step Methods

d
Consider IVP: d_Jt, = f(t,y); y(ty) =yt E [ty b]

Yn+1

Uprq — Un Numerical Method

h [un+1 =u, +hX slope]

\ 4

tn tn+ 1

Unt1 = Up T A X O(n, U, tnsr, Unsr, fL 1) How to get ¢?

Different approximations of ¢ leads to different numerical methods.
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RECAPITULATION —SINGLE STEP METHOD

Single Step Methods

Explicit (¢ is computed in terms of uy)

Implicit (¢ depends on u,,., itself through f)

\ 4

Unt1 = Up T A X P(tn, up, f, )

Euler : u,,; =u, + hf(t,, u,)

iyn+1

slope: f(t,, yn)

-
n ==
-
-
-
ot

———— / Un+1
Uy o - slope: f(t,u,)

R

B
»

tn tns1

A 4

Un+1 = Up T A X P(ty, Un, tyt1, Unsa, L 1)

Backward Euler : u,.; = u,, + hf (t;;41, Un+1)

————
-
_
-
—— i
- 1
3
-= yn+1

i

i

i

i

slope: f(tn+1, Yn+1)

* Un+1

slope: f(tn41, Uns1)

B
»

tn tn+1
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RECAPITULATION —SINGLE STEP METHOD

A

h h
slope: f | t, +§,y th +E ~7
Backward Euler
slope: f(tn+1JYn+1) & f(tn+1»un+1)

Forward Euler /

slope: f(t ) == ftmitn)\ > Vnsi

B
»

h
th ¢+ > tn+1

Explicit Midpoint Method

2

h
Upyr = Up + hf <tn + =

h
y Un +§fn

)

Implicit Midpoint Method

h Up + Upt

E;

Upyq = Uy + RS <tn +

)

Implicit Trapezoidal Method

h
Upy1 = Up T+ E(f(tnr Up) + f(tns1, Unt1))

Euler-Cauchy Method (Heun’s Method) (Improved Euler)

h
Unp41 = Unp + E (f(tn» un) + f(tn+1run + hf(tnr un)))
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RECAPITULATION —SINGLE STEP METHOD

Runge-Kutta Methods

uj+1 = uj + h(weighted average of slopes on the given interval)

Explicit Methods (n-stage): Euler-Cauchy Method (Heun’s Method)

h
ky = f(,u;) i = + 5 (f(Gw) + FGeow + R (Gw))

ky = f(tj +chu; + ha21k1) It can be rewritten as

ks = f(t; + czh,u; + has kg + hasyk,) ky = f(t,u)
k, = f(t + h,wj + hky)

ki + kz)

kn = f(t + cnhw; + haniky + hanzky + - + hann_1kn—)
u]'+1 = Uj + h( 5

u]'+1 = u]' + h[Wlkl + W2k2 + .-+ Wnkn]
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CLASSICAL RUNGE-KUTTA METHOD

h h h h
klzf(tj’uj) k2=f<tj+5;uj+zk1> k3=f(tj+5,u]'+§k2> k4=f(tj+h,uj+hk3)

h
uj+1 = u] + g(kl + 2k2 + 2k3 + k4)
Why Classical Runge-Kutta method of order 4 is popular?

Minimum number of function evaluation (MNFE) versus order

_____-__

MNFE

4 )
Remark: The order of an s-stage explicit method (RK) cannot be greater than s.

. Also, there does not exist a s-stage method (explicit RK) with order s if s = 5. y
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CONVERGENCE ANALYSIS

/" A method is said to be convergent if |lu,, —y,| - 0, Yn as h - 0. )

Moreover, it is said to be convergence of order p (= 1) if there exists C > 0 such that

Uy — ynl < ChP, vn as h—0 < |up — Yl = O(RP)

\ _J
Local Truncation Error L.T.E.: Single Step Numerical Method
Uptq = Uy + R X P(Ly, Up, f(tn, up), h)
| > Tn+1 = Yn+1 — Uns1
___________ n+1
""""""" i Tnt1 = Yn+1 — Yn — hd(Cn, Yo f (L ), R)
———— iun+1
u 5 . : : : :
" h Propagation of Errors ﬁonsmtency: The method is said to be consistent if \
| | di tc.
i - (ey, rounding error e:c) Tnyg 0,vn as h - 0
tn tn+1

Moreover, it is said to be convergence of order p(= 1) if

Convergence is the study of the Global error (e;,)
and consistency is the study of the local error (t,).
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CONSISTENCY

Euler Method: U, = u, + hf (t,, uy) Backward Euler Method

Tn+1| O(h
Tn+1 = Yn+1 — Yn — hf(tn::Vn) h ol ™ ( )

hz 14
Tpe1 = Yn T hY'(8) + 73’ (tn) — Yn — Af (tn, )
Explicit Midpoint Method

h2 U
P = )?/+ hf(%, ) 7)’”(%) 4o % _/f(tn: o Implicit Midpoint Method

Implicit Trapezoidal Method

Th+1
= ‘ N = 0(h) Euler-Cauchy Method
Tn+1 -0 h2
The calculation of consistency is essentially based on the application of nol (h?)

Taylor series expansion.
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CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

Ups1 = Uy + Rf (E, un); Ug = Yo N

= €n+1 = Yn+1 —Un+, N = U5 dL; 25 coc

= ur - €n+1
= €ny1 = Up+1 — Up+1 + Tn+1

= eni1 = Yo + Af (En, Yn) —up — hf (tn, up) + Thie

= €n+1 = €n + h(f(tnr yn) _ f(tn: un)) + Tn+1

tn tn+1
= leps1l < lenl + hIf (tn, y) — f (&, w )| + |Thal

Using Lipchitz condition on f, i.e., |f (t,, Vi) — f(t,, u)| < L|y, — uy| and |T,,41| < Ch?
= |leps1| < Ch? + (1 + Lh)|e,|

By recursion
= |lepe1| < Ch? + (1 4+ Lh)(Ch? + (1 + Lh)|e,_1]) = Ch?> + Ch?(1 + Lh) + (1 + Lh)?|e,,_4|
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CONVERGENCE ANALYSIS: EULER METHOD (NO ROUNDING ERRORS)

A

le 1] < Ch? + Ch?*(1 + Lh) + (1 + Lh)?|e,,_|

= |lepi1| < Ch? + Ch?(1 + Lh) + Ch?(1 + Lh)? + (1 + Lh)3|e,_,|

= |le,i1] < Ch? + Ch?(1 + Lh) + Ch*(1 + Lh)? + -+ (1 + Lh)"|e,|

= |le,41] < Ch? + Ch?(1 + Lh) + Ch*(1 + Lh)? + ---+ Ch?(1 + Lh)™

(1+hL)™ -1 to t
(1+hL—1)

= |en+1| =
Note that: t; =ty +h

1+ hL)™t -1 t, =ty + 2h
= lepp1] < ( Z Ch Using 1 + hL < eMt 20
tn+1 = to + (Tl + 1)h
e(n+1)hL -1
|en+1| = L Ch
: : The total error tends to zero with the same order as consistency error
e tn+1—to)L _ 1 Tn+1| _
= lensq| < 5 Ch; Vn L = 0(h)
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CONVERGENCE ANALYSIS: EULER METHOD (ROUNDING ERRORS)

Upyq = Uy + hf(tn» an) + gn; Uy = Yo + Sto Presence of rounding error does not
allow to conclude thate » 0 as h — 0.
$

_ 1
= |Yn+1 — Unal < e(tn+1to)L <|€0| +—<Ch +—>>; § = max ¢;

L h 1<isn+1

B
:en+1 SAh-I'_

h
ERROR vs. Step Size (Euler) ERROR vs. Step Size (In general)
| 1
10-! i
T 107 i
8 : —— Truncation error ~ A*h
3 1077 ' —— Rounding error ~ B/h 7))
g 9 | — Total error ~ A*h + B/h B
§ 10 : ——- h_opt = 1.6e-08 t
0 10-11 i L
10-13 i
1015} |

10~ 107° 1077 103 103 1071
Step size h (log scale)
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CONVERGENCE ANALYSIS

Direct convergence proof is difficult specifically for more complicated methods.

Alternatively we can study convergence through consistency and stability.

Stability of the IVP:
y' =fy) y() =y t€el (1)

Perturbed IVP: z'=f(t,z) +6(t); z(ty) =yo+6, teEI (2)

Kl'he IVP (1) is said to be stable on I if for any perturbation (60, 6(t)) stasifying \
160 < €, 6(t)] <€, Vt €]
There exists C > 0 such that

ly(t) —z(t)| < Ce
\The constant C depends in general on the problem data ¢y, yy and f but not ony
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CONVERGENCE ANALYSIS — Explicit One-Step Method

Zero Stability of One-Step Methods (Analogous to the Stability of IVP):

dy
Frie fty); y(ty) =yo,t € [to, to+T]

Single Step Method: u, ., = u, + ho(t,,, u,, f(t,, uy); h), ug =y, (1)

Single Step Method (perturbed): z,,., = z,, + h[p(t,, z,, f(t,, 2); h) + 84011, 2o = Vo + )

~ A
The numerical method (1) is said to be zero stable if 3 h, > 0 and C > 0 such that Vh € (0, hy], Ve > 0,

if |0,] < ¢, forall0 <n < Ny, then|z, —u,| <Ce 0<n<N,
. y,

Both constant C and hy may depend on problem’s data set ¢y, T, y,, and f but not on €.

This notion of the stability deals with the behaviour of the numerical methods in the limit case h = 0.
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CONVERGENCE ANALYSIS — Explicit One-Step Method

Zero Stability of One-Step Method: u,,q = u, + ho(t,, u,, f(t,, uy); h), ug =y, (1)

Zn41 = Zn T h[¢(tnr Zn, f(tn» Zn); h) + 6n+1]» Zy = Yo + 0o (2)

Gthe increment function ¢ is Lipschitz continuous with respect to the second argument, with content L \

independent of h and of the nodes t,, € [ty, t, + T, i.e.,

|¢(tnr uTU f(tn: un); h) — ¢(t7’l' ZTU f(tn' Zn); h)l S Llun o an» O S n S Nh

Qhen the method (1) is zero stable. j

Setting w,,11 = Zp4+1 — Un+1, from equation (1) and (2) we obtain:

Wnt1 = Wp + h[¢(tn: Un, f(tn: un); h) — Qb(tn: Zn» f(tn: Zn); h)] + héy, 44
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CONVERGENCE ANALYSIS — Explicit One-Step Method

Wnt1 = Wy + h[d(E,, Uy, f(tnr Un); h) — ¢(ty, zyp, f(tn» Zn); h)] + hépiq

= Wy = Wyoq + hld(En_1, un_q, f(En1, Un—1); B) — (tn_1, Zn—1, f (tn-1, Zn-1); R)] + hép

Substituting w,,_1 with the above relation again recursively we obtain:

n n-—1
Wy = wo + hz: 8j+h 2 (¢(tj»uj:f(tj»uj)i h) — (42, f(t;,2)); h)) (Wo = 2o — Uy = &)
=1 =0

Using Lipschitz continuity of ¢

n-1 n—-1
wal <18l +h ) 180l +hL ) |wjl,  1<n<N,
J=0 J=0
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CONVERGENCE ANALYSIS — Explicit One-Step Method

n-—1 n—-1
[Wn| < [80] + R z 1041 + AL z |wijl Using Gronwall’s Lemma and |6,,| < €, we get
Jj=0 Jj=0
n—1
wal < [ 1801+ ) 16411 | exp(nhL)
j=0
wn| < (1 + ﬁﬁ)e exp(@beL) <@+T) Yexp(TL)}e Hence the method (1) is zero stable
<T <T =C
éronwall’s Lemma (Discrete) Let k,, be a nonnegative sequence and ¢,, a sequence such that \
n-—1
wo < ¢go and WnS(g0+Cn)+ZkSWS, n=>1
J=0 n-—1
fgo = 0,c, =0,then Wn =< (go + ¢n) €xp zks , n=1

N Y
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CONVERGENCE ANALYSIS — Numerical Methods

Convergence Theorem (Lax-Richtmyer Theorem)

/" If the numerical method is stable then )
v TL
Iy — unl < (IyO — Ul +T (ﬂ) e't, 1<n<N, T = Osgé?v);_ll’fn+1(h)|
If |yo — ug|l < C{hP (= O(hp)) and % = O(hP) (consistency order p) then |y, — u,| = O(hp)j

A numerical method is convergent of order p if it is consistent of order p and zero-stable.

Consistency + Stability = Convergence

Sketch of the proof:  Un41 = Un + hp(tn, Un, f(tn, un); h), uo =yo (1)

Yn+1 = Yn T h¢(tn, Yn f(tn» Yn); h) + Tn+1 (2)

Proceed as before for the case of zero stability.
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CONVERGENCE ANALYSIS — Problem with Zero Stability

Consider the following problem

dt

Apply the Euler Method

Upyq = Uy + Ahuy, = Unyq = (1 + AD)u,
= u, = (1 + Ah)"u, given uy =1

tn
= u, = exp(In(1 + 1h)™) (h - g)

Letn = oo, h = 0 suchthatnh =t,

tnA
In (1 + T)

= u, = lim exp| t,4

i )
n

d
= Ay; y(0) = 1 ExactSolution: y(t) = e?*

= u, = exp(At,)
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But in practiceh » 0

Lets take A = —10 & h =0.4
= Up = (=3)"
The solution blow-up and oscillates

We observe that the numerical solution
will decay if

|[(1+Ah)|<1>-2<1Ah<0

Remark. Zero-stability, while necessary for
convergence, is not sufficient for practical
purposes. In real computations, one often requires
stronger notions of stability (such as absolute
stability, A-stability, or L-stability) to ensure reliable
performance of the numerical method
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ABSOLUTE STABILITY

Model Equation: Let us consider the following IVP:

dy

= f@&Y) Y(to) = Yot € [to,b]
The behavior of solution of above IVP in the neighborhood of any point (%, ¥) can be predicted by the linearized form of DE.
The function f(t, y)can be linearized in the neighborhood of the point (t, ) by expending it into the Taylor series as

fiey) = f&y)+ -0 fi(t,y) + v —¥)f,(t,y) + higher order terms

Define: u = fi(¢,3), 1= f, (&), c=f({y) —yrA+(t—Du
The given ode can be writtenas y' =~ Ay + ¢

Substituting ¢ =y + (%) + (%)
y' —% ~ A lw — (%) — (%)] +¢ = w =Aw (model equation)  Exact solution: w = ke’

For practical purposes (similar to lab scale test), it is sufficient to check stability for the linear equation w’ = Aw.
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ABSOLUTE STABILITY

Absolute stability is typically analysed using the test equation y' = Ay, since it captures several essential

features of more general differential equations.

For broader applicability, A is taken to be complex, A = Ay + i4;, with the restriction Az < 0 to ensure that

the exact solution remains non-growing (i.e., stable) in the continuous case.

é Absolute Stability: A numerical method for approximating A
y'(t) = dy; t>0; Re(1) <0, y(0) =1
is absolutely stable if [u,] = 0 as t,, > oo

Region of absolute stability = {Ah € C: the method is absolutely stable at Ah}

Abolute Stability = Zero Stability
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ABSOLUTE STABILITY

Please note that a single step method when applied to the test equation y'(t) = Ay leads to
Upyr = E(AR)u,; n=0,1,2, ..

We call single step method absolutely stable if |E(41h)]| < 1

Absolute Stability of Euler Method: | Im(h)

Applying the Euler method on the test equation:

Unyr = Up HhAuy, = upy = (1 +&Ll)un >
h=x+1iy / (D)

(=2,0)
|1+7Lh|=|1+x+iy|=\/(1+x)2+y2 /

Region of Absolute Stability

For Absolute stability, we require

JA+x)2+y2<1=>0+x)2+y% <1 Region of Absolute Stability: {h € C:| R+ 1 |< 1}
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ABSOLUTE STABILITY

Absolute Stability of Backward Euler Method: ., = u, + h ;11

1
= un+1 = un + h )lun+1 = un+1 = (1_—/1h)un Im(ﬁ)
= E(4h) = —(1 Z k)
For Absolute stability, we require Region of

Absolute Stability
<1=|[1-2n|>1 (Ah=}_l=x+ly)

‘ﬁ‘ (1”0) Re(h)

S|1=-x)—iy|>1 =21 —-x)2+y2>1

Region of Absolute Stability: {i_l EC:|h—-1|> 1}

The region of absolute stability is the entire complex plan except a disk centred at (1, 0) with radius 1.

Backward Euler Method is unconditionally absolutely stable.

A method is called A-stable if its region of absolute stability includes the entire left half of the complex plane.
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ABSOLUTE STABILITY — AN OBSERVATION

Suppose we solve y'(t) = 5y(t), y(0) = 1 using backward Euler method

If we pickany5h > 2 = h >2/5 -

(Absolute stability region) Im(h)
Since Ah is from the region of stability, the solution Region of
will decay and tends to 0 as t tends to oo. Absolute Stability
° . Re }_l
. e (1,0) *)
However, the exact solution of the problem tends to infinity.

Why this is not a contradiction of A-stability?

Backward Euler is A-stable because for Re(1) < 0 (decaying continuous problems), its numerical solution will also

decay (and not blow up). A-stability says nothing about problems with Re(1) > 0 (growing problems): the method

can (and here does) artificially damp them if the step is too large.
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h
Absolute Stability of Trapezoidal Method: u,,,; = U, + > (f(tpun) + f(tnet Unsr))

N S

h R R (”‘)
= Up41 = Up +E(/1un + AUpy1) 2 (1 __) Un+1 = (1 +_>un = Upt1 = 7\ Un

2 2 A

_ -2

(1+g) )
= E(h) = - IH}_(h)
(-3
y _ R R _
For Absolute stability, we require [ 1 + > <|1- > Region of
Absolute Stability

> Re(h)
= (2+h)<(2—h)©Re(h) <0

Region of Absolute Stability: {l_l e C: Re(l_l) < 0}

Implicit Trapezoidal Method is A stable.
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Absolute Stability of Euler-Cauchy Method (Heun’s Method)

h
Up41 = Up + 5 (f(tnr un) + f(tn+1run + hf(tn' un)))

Im(h)

h | | t

= Uns1 = Un +3 (Au, + A, (14 2h)) /\

AL Ah 22R? [ Regionof |
= Upt1 = (1"' 2 + 2 + 2 >un Absolute + Re(h
/ Stability ~ Re(h)

i | )J

S Uy =1+ A0+ > Uy (—=2,0) \/ |

_ _  h?
=>E(h)=(1+h+7>

_ _ h?
Region of Absolute Stability: {h e C ‘1 + h + >

D
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Absolute Stability of Euler-Cauchy Method (Heun’s Method)

Forreal A < O:

A?h?
‘(1 + Ah + > )

A“h?
<1 =>—1<<1+/1h+ = >< 1

1
= —1 <E(2+2/1h+/12h2)< 1

> -2<(1+(1+1h)?) <2
\ J

|
always satisfied

>1+1+2))<2 2(1+1)?<1 =2-1<1+1h<1 =2-2<1h<0

= Ah € (—2,0)  Same as Euler Method
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Region of Absolute Stability of Explicit Methods

Euler Method Euler-Cauchy Method

' 1m(h) Im(h)

v

v

/ Re(h)

(=2,0)

Re(h)
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Region of Absolute Stability of Implicit Methods

Backward Euler Method Trapezoidal Method

[m(h) Im(k)

Re(h) Re(R)
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Problems with Trapezoidal Method

Consider solution of a stiff IVP: y'(t) = —1000y; y(0) =1

If we want to solve it using explicit method, e.g., Euler Method then h < 0.0001.

Therefore we need to use an implicit method.

1 1 T T T T

True solution Imp||C|t MIdeInt MethOd

—oe— Backward Euler
—se— Trapezoidal

Untr = Up + Af (Ens1, Unst)

Implicit Trapezoidal Method

h
Upt1 = Up + E (f(tn' un) + f(tn+1»un+1))

-0.8 1 I L L
0 0.02 0.04 0.06 0.08 0.1
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L-Stability

A numerical method for solving ODEs is called L-stable if

1. Itis A-stable (its region of absolute stability includes the entire left half of the complex plane), and

2. Its stability function E (l_l) satisfies Hl_i)r_noo E (E) =0

Backward Euler Method:

1
= E(Ah) = A= = E(Ah) - 0 as Ah » — L-stable

Trapezoidal Method:

) = (1+ Ah/2)

= E(Ah —1as Ah - — Only A-stable and not L-stable
(A —anj2y FAR) = —las Ah = —co y

Note: L-stability adds the property that very stiff components decay to zero rapidly.

This eliminates spurious oscillations and makes the method especially effective for stiff problems.
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CONCLUDING REMARKS

» Implicit one-step methods (examined so far) = unconditionally absolutely stable.
» Explicit schemes (examined so far) = conditionally absolutely stable.

» This is not a general rule. Some implicit schemes are unstable or only conditionally stable. However,

no explicit scheme is unconditionally absolutely stable.
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